A236457 Primes p with q = p + 2 and prime(q) + 2 both prime.
3, 5, 11, 41, 107, 311, 461, 599, 641, 1277, 1619, 1997, 2309, 2381, 2789, 3671, 4787, 5099, 6659, 6701, 6827, 7457, 7487, 8219, 8537, 8597, 9929, 10709, 11117, 12071, 12107, 12251, 13709, 17747, 18047, 18251, 18521, 22091, 22637, 23027
Offset: 1
Keywords
Examples
a(1) = 3 since 3 + 2 = 5 and prime(5) + 2 = 13 are both prime, but 2 + 2 = 4 is not.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
p[n_]:=PrimeQ[n+2]&&PrimeQ[Prime[n+2]+2] In[2]:= n=0;Do[If[p[Prime[m]],n=n+1;Print[n," ",Prime[m]]],{m,1,10000}] Select[Prime[Range[2600]],AllTrue[{#+2,Prime[#+2]+2},PrimeQ]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jun 21 2021 *)
-
PARI
s=[]; forprime(p=2, 24000, q=p+2; if(isprime(q) && isprime(prime(q)+2), s=concat(s, p))); s \\ Colin Barker, Jan 26 2014
Comments