A236468 Number of ordered ways to write n = k + m with k > 0 and m > 0 such that p = phi(k) + phi(m)/2 - 1, p + 2 and prime(p) - 2 are all prime, where phi(.) is Euler's totient function.
0, 0, 0, 0, 0, 0, 0, 2, 2, 1, 3, 1, 1, 2, 2, 4, 0, 1, 2, 2, 1, 2, 1, 1, 2, 0, 3, 2, 2, 3, 4, 2, 1, 2, 5, 3, 4, 0, 6, 6, 1, 3, 1, 5, 4, 5, 2, 5, 1, 7, 1, 3, 2, 5, 1, 4, 1, 7, 0, 5, 4, 1, 8, 1, 5, 5, 1, 2, 5, 4, 4, 4, 4, 1, 5, 1, 7, 3, 3, 2, 2, 1, 8, 3, 3, 2, 2, 2, 6, 3, 7, 2, 6, 5, 1, 1, 5, 4, 9, 3
Offset: 1
Keywords
Examples
a(33) = 1 since 33 = 7 + 26 with phi(7) + phi(26)/2 - 1 = 11, 11 + 2 = 13 and prime(11) - 2 = 31 - 2 = 29 all prime. a(278) = 1 since 278 = 61 + 217 with phi(61) + phi(217)/2 - 1 = 60 + 90 - 1 = 149, 149 + 2 = 151 and prime(149) - 2 = 859 - 2 = 857 all prime.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
p[n_]:=PrimeQ[n]&&PrimeQ[n+2]&&PrimeQ[Prime[n]-2] f[n_,k_]:=EulerPhi[k]+EulerPhi[n-k]/2-1 a[n_]:=Sum[If[p[f[n,k]],1,0],{k,1,n-3}] Table[a[n],{n,1,100}]
Comments