cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A236467 Primes p with p + 2 and prime(p) - 2 both prime.

Original entry on oeis.org

3, 11, 29, 149, 179, 191, 269, 347, 431, 461, 617, 659, 1031, 1619, 1931, 3467, 3527, 4799, 6569, 6689, 7349, 7877, 9011, 9767, 11117, 12611, 13691, 13901, 14549, 16067, 16139, 16451, 16631, 17489, 17681, 18911, 20981, 22367, 23909, 24179
Offset: 1

Views

Author

Zhi-Wei Sun, Jan 26 2014

Keywords

Comments

According to the conjecture in A236468, this sequence should have infinitely many terms.
See A236457 and A236458 for similar sequences.

Examples

			a(1) = 3 since 3, 3 + 2 = 5 and prime(3) - 2 = 3 are all prime, but 2 + 2 = 4 is composite.
		

Crossrefs

Programs

  • Mathematica
    p[n_]:=p[n]=PrimeQ[n+2]&&PrimeQ[Prime[n]-2]
    n=0;Do[If[p[Prime[m]],n=n+1;Print[n," ",Prime[m]]],{m,1,10000}]
    Select[Prime[Range[3000]],AllTrue[{#+2,Prime[#]-2},PrimeQ]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Oct 11 2020 *)

A236470 a(n) = |{0 < k < n: p = prime(k) + phi(n-k), p + 2 and prime(p) + 2 are all prime}|, where phi(.) is Euler's totient function.

Original entry on oeis.org

0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 2, 1, 2, 1, 1, 1, 1, 0, 2, 2, 2, 0, 1, 0, 1, 1, 0, 3, 0, 1, 0, 1, 3, 0, 1, 1, 1, 0, 1, 0, 0, 1, 2, 1, 0, 0, 0, 0, 2, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 2, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 2, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0
Offset: 1

Views

Author

Zhi-Wei Sun, Jan 26 2014

Keywords

Comments

Conjecture: a(n) > 0 for all n > 948.
We have verified this for n up to 50000.
The conjecture implies that there are infinitely many primes p with p + 2 and prime(p) + 2 both prime. See A236458 for such primes p.

Examples

			 a(12) = 1 since prime(5) + phi(7) = 11 + 6 = 17, 17 + 2 = 19 and prime(17) + 2 = 59 + 2 = 61 are all prime.
a(97) = 1 since prime(7) + phi(90) = 17 + 24 = 41, 41 + 2 = 43 and prime(41) + 2 = 179 + 2 = 181 are all prime.
		

Crossrefs

Programs

  • Mathematica
    p[n_]:=PrimeQ[n]&&PrimeQ[n+2]&&PrimeQ[Prime[n]+2]
    f[n_,k_]:=Prime[k]+EulerPhi[n-k]
    a[n_]:=Sum[If[p[f[n,k]],1,0],{k,1,n-1}]
    Table[a[n],{n,1,100}]

A236481 Primes p with p + 2, prime(p) + 2 and prime(prime(p)) + 2 all prime.

Original entry on oeis.org

3, 1949, 4217, 8219, 9929, 22091, 23537, 28097, 38711, 41609, 50051, 60899, 68111, 72227, 74159, 79631, 115151, 122399, 127679, 150959, 155537, 266687, 267611, 270551, 271499, 284741, 306347, 428297, 433661, 444287
Offset: 1

Views

Author

Zhi-Wei Sun, Jan 26 2014

Keywords

Comments

Conjecture: For any positive integer m, there are infinitely many chains p(1) < p(2) < ... < p(m) of m primes with p(k) + 2 prime for all k = 1,...,m such that p(k + 1) = prime(p(k)) for every 0 < k < m.

Examples

			a(1) = 3 since 3, 3 + 2 = 5, prime(3) + 2 = 7 and prime(prime(3)) + 2 = prime(5) + 2 = 13 are all prime, but 2 + 2 = 4 is composite.
		

Crossrefs

Programs

  • Mathematica
    p[n_]:=p[n]=PrimeQ[n+2]&&PrimeQ[Prime[n]+2]&&PrimeQ[Prime[Prime[n]]+2]
    n=0;Do[If[p[Prime[m]],n=n+1;Print[n," ",Prime[m]]],{m,1,10^6}]

A236480 a(n) = |{0 < k < n-2: p = 2*phi(k) + phi(n-k)/2 + 1, prime(p) + 2 and prime(prime(p)) + 2 are all prime}|, where phi(.) is Euler's totient function.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 2, 1, 1, 2, 1, 3, 2, 2, 0, 2, 3, 1, 2, 1, 3, 3, 2, 2, 1, 1, 1, 3, 0, 2, 3, 2, 1, 3, 0, 2, 0, 1, 1, 1, 1, 2, 0, 0, 0, 0, 2, 2, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Zhi-Wei Sun, Jan 26 2014

Keywords

Comments

Conjecture: a(n) > 0 for every n = 640, 641, ....
We have verified this for n up to 75000.
The conjecture implies that there are infinitely many primes p with prime(p) + 2 and prime(prime(p)) + 2 both prime.

Examples

			a(8) = 1 since 2*phi(3) + phi(5)/2 + 1 = 7, prime(7) + 2 = 17 + 2 = 19 and prime(prime(7)) + 2 = prime(17) + 2 = 61 are all prime.
a(667) = 1 since 2*phi(193) + phi(667-193)/2 + 1 = 384 + 78 + 1 = 463, prime(463) + 2 = 3299 + 2 = 3301 and prime(prime(463)) + 2 = prime(3299) + 2 = 30559 are all prime.
		

Crossrefs

Programs

  • Mathematica
    p[n_]:=PrimeQ[n]&&PrimeQ[Prime[n]+2]&&PrimeQ[Prime[Prime[n]]+2]
    f[n_,k_]:=2*EulerPhi[k]+EulerPhi[n-k]/2+1
    a[n_]:=Sum[If[p[f[n,k]],1,0],{k,1,n-3}]
    Table[a[n],{n,1,100}]
Showing 1-4 of 4 results.