cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A236482 Primes p with p + 2, prime(p) + 2, prime(prime(p)) + 2 and prime(prime(prime(p))) + 2 all prime.

Original entry on oeis.org

41609, 1119047, 1928621, 2348579, 2371709, 3406727, 4098569, 4204817, 4438997, 5561819, 6161159, 6293297, 8236439, 8736701, 8890667, 8951387, 9231329, 9390077, 10492457, 10619897, 11255729, 11514719, 11769479, 11920661, 12316697
Offset: 1

Views

Author

Zhi-Wei Sun, Jan 26 2014

Keywords

Comments

According to the general conjecture in A236481, this sequence should have infinitely many terms.

Examples

			a(1) = 41609 with 41609, 41609 + 2 = 41611, prime(41609) + 2 = 500909 + 2 = 500911, prime(500909) + 2 = 7382957 + 2 = 7382959 and prime(7382957) + 2 = 130090109 + 2 = 130090111 all prime.
		

Crossrefs

Programs

  • Mathematica
    p[n_]:=p[n]=PrimeQ[n+2]&&PrimeQ[Prime[n]+2]&&PrimeQ[Prime[Prime[n]]+2]&&PrimeQ[Prime[Prime[Prime[n]]]+2]
    n=0;Do[If[p[Prime[m]],n=n+1;Print[n," ",Prime[m]]],{m,1,10^6}]

A236484 Primes p with p + 2, prime(p) + 2, prime(prime(p)) + 2, prime(prime(prime(p))) + 2, prime(prime(prime(prime(p)))) + 2 all prime.

Original entry on oeis.org

2371709, 3406727, 8890667, 45809639, 57219497, 58674437, 73793831, 78934589, 159935561, 207223409
Offset: 1

Views

Author

Zhi-Wei Sun, Jan 27 2014

Keywords

Comments

By the general conjecture in A236481, this sequence should have infinitely many terms.

Examples

			a(1) =  2371709 with  2371709, 2371709 + 2 = 2371711, prime(2371709) + 2 = 38917889 + 2 = 38917891, prime(38917889) + 2 =  754394519 + 2 = 754394521, prime(754394519) + 2 = 16978533527 + 2 = 16978533529 and prime(16978533527) + 2 =  437397516929 + 2 = 437397516931 all prime.
		

Crossrefs

Programs

  • Mathematica
    p[n_]:=p[n]=PrimeQ[n+2]&&PrimeQ[Prime[n]+2]&&PrimeQ[Prime[Prime[n]]+2]&&PrimeQ[Prime[Prime[Prime[n]]]+2]&&PrimeQ[Prime[Prime[Prime[Prime[n]]]]+2]
    n=0;Do[If[p[Prime[m]],n=n+1;Print[n," ",Prime[m]]],{m,1,10^7}]

A236480 a(n) = |{0 < k < n-2: p = 2*phi(k) + phi(n-k)/2 + 1, prime(p) + 2 and prime(prime(p)) + 2 are all prime}|, where phi(.) is Euler's totient function.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 2, 1, 1, 2, 1, 3, 2, 2, 0, 2, 3, 1, 2, 1, 3, 3, 2, 2, 1, 1, 1, 3, 0, 2, 3, 2, 1, 3, 0, 2, 0, 1, 1, 1, 1, 2, 0, 0, 0, 0, 2, 2, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Zhi-Wei Sun, Jan 26 2014

Keywords

Comments

Conjecture: a(n) > 0 for every n = 640, 641, ....
We have verified this for n up to 75000.
The conjecture implies that there are infinitely many primes p with prime(p) + 2 and prime(prime(p)) + 2 both prime.

Examples

			a(8) = 1 since 2*phi(3) + phi(5)/2 + 1 = 7, prime(7) + 2 = 17 + 2 = 19 and prime(prime(7)) + 2 = prime(17) + 2 = 61 are all prime.
a(667) = 1 since 2*phi(193) + phi(667-193)/2 + 1 = 384 + 78 + 1 = 463, prime(463) + 2 = 3299 + 2 = 3301 and prime(prime(463)) + 2 = prime(3299) + 2 = 30559 are all prime.
		

Crossrefs

Programs

  • Mathematica
    p[n_]:=PrimeQ[n]&&PrimeQ[Prime[n]+2]&&PrimeQ[Prime[Prime[n]]+2]
    f[n_,k_]:=2*EulerPhi[k]+EulerPhi[n-k]/2+1
    a[n_]:=Sum[If[p[f[n,k]],1,0],{k,1,n-3}]
    Table[a[n],{n,1,100}]

A237283 Primes p with prime(prime(p)) + 2 also prime.

Original entry on oeis.org

2, 3, 7, 13, 23, 29, 59, 71, 103, 193, 257, 271, 281, 311, 317, 389, 433, 439, 463, 569, 577, 619, 673, 683, 691, 797, 811, 857, 859, 887, 1031, 1069, 1109, 1129, 1153, 1229, 1307, 1597, 1613, 1867, 1949, 1951, 2069, 2297, 2477, 2551, 2621, 2657, 2699, 2753
Offset: 1

Views

Author

Zhi-Wei Sun, Feb 05 2014

Keywords

Comments

This sequence is interesting because of the conjecture in A237253.
A236481, A236482 and A236484 are subsequences of the sequence.

Examples

			a(1) = 2 since 2 and prime(prime(2)) + 2 = prime(3) + 2 = 7 are both prime.
		

Crossrefs

Programs

  • Mathematica
    n=0;Do[If[PrimeQ[Prime[Prime[Prime[k]]]+2],n=n+1;Print[n," ",Prime[k]]],{k,1,1000}]
    Select[Prime[Range[500]],PrimeQ[Prime[Prime[#]]+2]&] (* Harvey P. Dale, May 30 2018 *)
Showing 1-4 of 4 results.