cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A236481 Primes p with p + 2, prime(p) + 2 and prime(prime(p)) + 2 all prime.

Original entry on oeis.org

3, 1949, 4217, 8219, 9929, 22091, 23537, 28097, 38711, 41609, 50051, 60899, 68111, 72227, 74159, 79631, 115151, 122399, 127679, 150959, 155537, 266687, 267611, 270551, 271499, 284741, 306347, 428297, 433661, 444287
Offset: 1

Views

Author

Zhi-Wei Sun, Jan 26 2014

Keywords

Comments

Conjecture: For any positive integer m, there are infinitely many chains p(1) < p(2) < ... < p(m) of m primes with p(k) + 2 prime for all k = 1,...,m such that p(k + 1) = prime(p(k)) for every 0 < k < m.

Examples

			a(1) = 3 since 3, 3 + 2 = 5, prime(3) + 2 = 7 and prime(prime(3)) + 2 = prime(5) + 2 = 13 are all prime, but 2 + 2 = 4 is composite.
		

Crossrefs

Programs

  • Mathematica
    p[n_]:=p[n]=PrimeQ[n+2]&&PrimeQ[Prime[n]+2]&&PrimeQ[Prime[Prime[n]]+2]
    n=0;Do[If[p[Prime[m]],n=n+1;Print[n," ",Prime[m]]],{m,1,10^6}]

A236484 Primes p with p + 2, prime(p) + 2, prime(prime(p)) + 2, prime(prime(prime(p))) + 2, prime(prime(prime(prime(p)))) + 2 all prime.

Original entry on oeis.org

2371709, 3406727, 8890667, 45809639, 57219497, 58674437, 73793831, 78934589, 159935561, 207223409
Offset: 1

Views

Author

Zhi-Wei Sun, Jan 27 2014

Keywords

Comments

By the general conjecture in A236481, this sequence should have infinitely many terms.

Examples

			a(1) =  2371709 with  2371709, 2371709 + 2 = 2371711, prime(2371709) + 2 = 38917889 + 2 = 38917891, prime(38917889) + 2 =  754394519 + 2 = 754394521, prime(754394519) + 2 = 16978533527 + 2 = 16978533529 and prime(16978533527) + 2 =  437397516929 + 2 = 437397516931 all prime.
		

Crossrefs

Programs

  • Mathematica
    p[n_]:=p[n]=PrimeQ[n+2]&&PrimeQ[Prime[n]+2]&&PrimeQ[Prime[Prime[n]]+2]&&PrimeQ[Prime[Prime[Prime[n]]]+2]&&PrimeQ[Prime[Prime[Prime[Prime[n]]]]+2]
    n=0;Do[If[p[Prime[m]],n=n+1;Print[n," ",Prime[m]]],{m,1,10^7}]

A237283 Primes p with prime(prime(p)) + 2 also prime.

Original entry on oeis.org

2, 3, 7, 13, 23, 29, 59, 71, 103, 193, 257, 271, 281, 311, 317, 389, 433, 439, 463, 569, 577, 619, 673, 683, 691, 797, 811, 857, 859, 887, 1031, 1069, 1109, 1129, 1153, 1229, 1307, 1597, 1613, 1867, 1949, 1951, 2069, 2297, 2477, 2551, 2621, 2657, 2699, 2753
Offset: 1

Views

Author

Zhi-Wei Sun, Feb 05 2014

Keywords

Comments

This sequence is interesting because of the conjecture in A237253.
A236481, A236482 and A236484 are subsequences of the sequence.

Examples

			a(1) = 2 since 2 and prime(prime(2)) + 2 = prime(3) + 2 = 7 are both prime.
		

Crossrefs

Programs

  • Mathematica
    n=0;Do[If[PrimeQ[Prime[Prime[Prime[k]]]+2],n=n+1;Print[n," ",Prime[k]]],{k,1,1000}]
    Select[Prime[Range[500]],PrimeQ[Prime[Prime[#]]+2]&] (* Harvey P. Dale, May 30 2018 *)
Showing 1-3 of 3 results.