A236472 a(n) = |{0 < k < n: p = prime(k) + phi(n-k), prime(p) + 2 and prime(p) + 6 are all prime}|, where phi(.) is Euler's totient function.
0, 1, 1, 0, 1, 2, 2, 2, 2, 1, 2, 1, 2, 1, 0, 1, 1, 2, 3, 0, 1, 1, 1, 2, 0, 1, 1, 0, 0, 2, 0, 2, 2, 1, 0, 0, 3, 1, 2, 0, 2, 2, 2, 1, 0, 0, 4, 1, 0, 0, 0, 0, 5, 0, 1, 1, 1, 2, 1, 1, 3, 0, 0, 2, 2, 0, 2, 2, 2, 3, 1, 1, 2, 1, 1, 2, 2, 3, 3, 3, 2, 0, 0, 2, 1, 1, 3, 0, 0, 2, 0, 3, 0, 0, 1, 1, 0, 2, 0, 0
Offset: 1
Keywords
Examples
a(10) = 1 since prime(2) + phi(8) = 3 + 4 = 7, prime(7) + 2 = 17 + 2 = 19 and prime(7) + 6 = 23 are all prime. a(877) = 1 since prime(784) + phi(877-784) = 6007 + 60 = 6067, prime(6067) + 2 = 60101 + 2 = 60103 and prime(6067) + 6 = 60107 are all prime.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
p[n_]:=PrimeQ[n]&&PrimeQ[Prime[n]+2]&&PrimeQ[Prime[n]+6] f[n_,k_]:=Prime[k]+EulerPhi[n-k] a[n_]:=Sum[If[p[f[n,k]],1,0],{k,1,n-1}] Table[a[n],{n,1,100}]
Comments