cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A236472 a(n) = |{0 < k < n: p = prime(k) + phi(n-k), prime(p) + 2 and prime(p) + 6 are all prime}|, where phi(.) is Euler's totient function.

Original entry on oeis.org

0, 1, 1, 0, 1, 2, 2, 2, 2, 1, 2, 1, 2, 1, 0, 1, 1, 2, 3, 0, 1, 1, 1, 2, 0, 1, 1, 0, 0, 2, 0, 2, 2, 1, 0, 0, 3, 1, 2, 0, 2, 2, 2, 1, 0, 0, 4, 1, 0, 0, 0, 0, 5, 0, 1, 1, 1, 2, 1, 1, 3, 0, 0, 2, 2, 0, 2, 2, 2, 3, 1, 1, 2, 1, 1, 2, 2, 3, 3, 3, 2, 0, 0, 2, 1, 1, 3, 0, 0, 2, 0, 3, 0, 0, 1, 1, 0, 2, 0, 0
Offset: 1

Views

Author

Zhi-Wei Sun, Jan 26 2014

Keywords

Comments

Conjecture: a(n) > 0 for every n = 330, 331, ....
We have verified this for n up to 80000.
The conjecture implies that there are infinitely many prime triples of the form {prime(p), prime(p) + 2, prime(p) + 6} with p prime. See A236464 for such primes p.

Examples

			a(10) = 1 since prime(2) + phi(8) = 3 + 4 = 7, prime(7) + 2 = 17 + 2 = 19 and prime(7) + 6 = 23 are all prime.
a(877) = 1 since prime(784) + phi(877-784) = 6007 + 60 = 6067, prime(6067) + 2 = 60101 + 2 = 60103 and prime(6067) + 6 = 60107 are all prime.
		

Crossrefs

Programs

  • Mathematica
    p[n_]:=PrimeQ[n]&&PrimeQ[Prime[n]+2]&&PrimeQ[Prime[n]+6]
    f[n_,k_]:=Prime[k]+EulerPhi[n-k]
    a[n_]:=Sum[If[p[f[n,k]],1,0],{k,1,n-1}]
    Table[a[n],{n,1,100}]