cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A236527 Primes obtained by concatenating to the end of previous term the next smallest number that will produce a prime, starting with 3.

Original entry on oeis.org

3, 31, 311, 3119, 31193, 3119317, 31193171, 311931713, 3119317139, 311931713939, 31193171393933, 3119317139393353, 31193171393933531, 3119317139393353121, 311931713939335312127, 311931713939335312127113, 31193171393933531212711399, 31193171393933531212711399123
Offset: 1

Views

Author

Derek Orr, Jan 27 2014

Keywords

Comments

a(n + 1) is the next smallest prime beginning with a(n). Initial term is 3. These are the primes arising in A069605.

Examples

			a(1) = 3 by definition.
a(2) is the next smallest prime beginning with 3, so a(2) = 31.
a(3) is the next smallest prime beginning with 31, so a(3) = 311.
		

Crossrefs

Programs

  • Mathematica
    A069605[1] = 3; A236527[1] = 3; A069605[n_] := A069605[n] = Block[{k = 1, c = IntegerDigits @ Table[ a[i], {i, n - 1}]}, While[ !PrimeQ[ FromDigits[Flatten[Append[c, IntegerDigits[k]]]]], k += 2]; k]; A236527[n_] := A236527[n] = FromDigits[Flatten[IntegerDigits[A236527[n - 1]], IntegerDigits[A069605[n]]]]; Table[A236527[n], {n, 20}] (* Alonso del Arte, Jan 28 2014 based on Robert G. Wilson v's program for A069605 *)
    nxt[n_]:=Module[{s=1},While[CompositeQ[n*10^IntegerLength[s]+s],s+=2];n*10^IntegerLength[s]+s]; NestList[nxt,3,20] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jun 22 2020 *)
  • Python
    import sympy
    from sympy import isprime
    def b(x):
      num = str(x)
      n = 1
      while n < 10**3:
        new_num = str(x) + str(n)
        if isprime(int(new_num)):
          print(int(new_num))
          x = new_num
          n = 1
        else:
          n += 1
    b(3)