A236536 Array T(n,k) read along antidiagonals: the composites of order of compositeness n in row n.
4, 6, 9, 8, 12, 16, 10, 15, 21, 26, 14, 18, 25, 33, 39, 20, 24, 28, 38, 49, 56, 22, 32, 36, 42, 55, 69, 78, 27, 34, 48, 52, 60, 77, 94, 106, 30, 40, 50, 68, 74, 84, 105, 125, 141, 35, 45, 57, 70, 93, 100, 115, 140, 164, 184, 44, 51, 64, 80, 95, 124, 133, 152, 183, 212, 236, 46, 63, 72, 88, 110, 126, 162, 174, 198, 235, 270, 299
Offset: 1
Examples
The array starts: 4, 6, 8, 10, 14, 20, 22, 27, 30, 35,... 9, 12, 15, 18, 24, 32, 34, 40, 45, 51,... 16, 21, 25, 28, 36, 48, 50, 57, 64, 72,... 26, 33, 38, 42, 52, 68, 70, 80, 88, 98,... 39, 49, 55, 60, 74, 93, 95,110,119,130,... 56, 69, 77, 84,100,124,126,145,156,170,... 78, 94,105,115,133,162,165,188,203,218,... 106,125,140,152,174,209,213,242,259,278,... 141,164,183,198,222,266,272,305,326,348,...
Programs
-
Maple
A236536 := proc(n,k) option remember ; if n = 1 then A022449(k) ; else A002808(procname(n-1,k)) ; end if: end proc: for d from 2 to 10 do for k from d-1 to by -1 do printf("%3d,",A236536(d-k,k)) ; end do: end do:
-
Mathematica
Composite[n_] := FixedPoint[n + PrimePi[#] + 1&, n + PrimePi[n] + 1]; T[n_, k_] := T[n, k] = If[n == 1, Composite[If[k == 1, 1, Prime[k - 1]]], Composite[T[n - 1, k]]]; Table[T[n - k + 1, k], {n, 1, 12}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Sep 16 2023 *)
Comments