A236537 Primes whose binary and ternary representations are also prime when read in decimal.
157, 199, 229, 313, 367, 523, 883, 1483, 2683, 2971, 3109, 3253, 3637, 4093, 4357, 4363, 4729, 4951, 5119, 5827, 6529, 9241, 10909, 11527, 13477, 15271, 15919, 18439, 19273, 19483, 22921, 24019, 29833, 31237, 31573, 32803, 35863, 35899, 36109, 36973, 39799
Offset: 1
Examples
157 is prime and appears in the sequence. Its representation in binary = 10011101 and in ternary = 12211 are also prime when read in decimal. 313 is prime and appears in the sequence. Its representation in binary = 100111001 and in ternary = 102121 are also prime when read in decimal.
Links
- K. D. Bajpai, Table of n, a(n) for n = 1..2115
Crossrefs
Programs
-
Mathematica
t={}; n=1; While[Length[t] < 50, n=NextPrime[n]; If[PrimeQ[FromDigits[IntegerDigits[n,2]]] && PrimeQ[FromDigits[IntegerDigits[n,3]]], AppendTo[t,n]]]; t
-
PARI
base_b(n, b) = my(s=[], r, x=10); while(n>0, r = n%b; n = n\b; s = concat(r, s)); eval(Pol(s)) s=[]; forprime(p=2, 40000, if(isprime(base_b(p, 2)) && isprime(base_b(p, 3)), s=concat(s, p))); s \\ Colin Barker, Jan 28 2014