A236542 Array T(n,k) read along descending antidiagonals: row n contains the primes with n steps in the prime index chain.
2, 7, 3, 13, 17, 5, 19, 41, 59, 11, 23, 67, 179, 277, 31, 29, 83, 331, 1063, 1787, 127, 37, 109, 431, 2221, 8527, 15299, 709, 43, 157, 599, 3001, 19577, 87803, 167449, 5381, 47, 191, 919, 4397, 27457, 219613, 1128889, 2269733, 52711
Offset: 1
Examples
The array starts: 2, 7, 13, 19, 23, 29, 37, 43, 47, 53,... 3, 17, 41, 67, 83, 109, 157, 191, 211, 241,... 5, 59, 179, 331, 431, 599, 919, 1153, 1297, 1523,... 11, 277, 1063, 2221, 3001, 4397, 7193, 9319,10631,12763,... 31, 1787, 8527,19577,27457,42043,72727,96797,112129,137077,...
Links
- N. Fernandez, An order of primeness, F(p).
Crossrefs
Programs
-
Maple
A236542 := proc(n,k) option remember ; if n = 1 then A007821(k) ; else ithprime(procname(n-1,k)) ; end if: end proc: for d from 2 to 10 do for k from d-1 to 1 by -1 do printf("%d,",A236542(d-k,k)) ; end do: end do:
-
Mathematica
A007821 = Prime[Select[Range[15], !PrimeQ[#]&]]; T[n_, k_] := T[n, k] = If[n == 1, If[k <= Length[A007821], A007821[[k]], Print["A007821 must be extended"]; Abort[]], Prime[T[n-1, k]]]; Table[T[n-k+1, k], {n, 1, 9}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Apr 16 2020 *)
Formula
T(1,k) = A007821(k).
T(n,k) = prime( T(n-1,k) ), n>1 .
Comments