cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A236551 Primes formed from concatenation of PrimePi(n) and prime(n).

Original entry on oeis.org

2, 13, 311, 313, 419, 641, 643, 647, 653, 761, 983, 997, 9103, 11131, 11149, 12157, 12163, 14197, 15227, 15233, 18307, 18311, 18313, 20353, 20359, 21379, 21383, 21397, 22409, 23431, 24499, 25523, 25541, 26557, 29599, 30631, 30643, 30661, 30677, 31727, 33773
Offset: 1

Views

Author

K. D. Bajpai, Jan 28 2014

Keywords

Examples

			pi(6) = 3: prime(6) = 13. Concatenation of 3 and 13 gives 313 which is prime and appears in the sequence.
pi(8) = 4: prime(6) = 19. Concatenation of 4 and 19 gives 419 which is prime and appears in the sequence.
		

Crossrefs

Cf. A030458 (primes: concatenation of n and n+1), A084667 (primes: concatenation of n and prime(n)), A084669 (primes: concatenation of prime(n) and n).

Programs

  • Maple
    with(StringTools): with(numtheory): KD := proc() local a,b,d; a:=pi(n); b:=ithprime(n); d:=parse(cat(a,b));  if isprime (d) then RETURN (d); fi;  end: seq(KD(), n=1..300);
  • Mathematica
    Select[Table[FromDigits[Flatten[{IntegerDigits[PrimePi[n]], IntegerDigits[Prime[n]]}]], {n, 100}], PrimeQ] (* Alonso del Arte, Jan 28 2014 *)