A236560 Number T(n,k) of equivalence classes of ways of placing k 3 X 3 tiles in an n X n square under all symmetry operations of the square; irregular triangle T(n,k), n>=3, 0<=k<=floor(n/3)^2, read by rows.
1, 1, 1, 1, 1, 3, 1, 3, 6, 2, 1, 1, 6, 21, 29, 14, 1, 6, 53, 161, 174, 1, 10, 111, 665, 1713, 1549, 608, 107, 11, 1, 1, 10, 201, 1961, 9973, 24267, 29437, 17438, 4756, 459
Offset: 3
Examples
T(6,2) = 6 because the number of equivalence classes of ways of placing 2 3 X 3 square tiles in a 6 X 6 square under all symmetry operations of the square is 6. The portrayal of an example from each equivalence class is: .___________ ___________ ___________ | | | | |_____| | | | | . | . | | . | | | . |_____| |_____|_____| |_____| . | |_____| | | | | |_____| | | . | | | | | | |_____| |___________| |___________| |_____|_____| . .___________ ___________ ___________ | | | |_____ _____| |_____ | | . | | | | | | |_____| |_____|_____| | . | . | | . | | | | | |_____|_____| |_____| . | | | . | | | | |_____| |_____|_____| |___________| |_____|_____|
Links
- Christopher Hunt Gribble, C++ program
Formula
It appears that:
T(n,0) = 1, n>= 3
T(n,1) = (floor((n-3)/2)+1)*(floor((n-3)/2+2))/2, n >= 3
T(c+2*3,2) = A131474(c+1)*(3-1) + A000217(c+1)*floor((3-1)(3-3)/4) + A014409(c+2), 0 <= c < 3, c odd
T(c+2*3,3) = (c+1)(c+2)/2(2*A002623(c-1)*floor((3-c-1)/2) + A131941(c+1)*floor((3-c)/2)) + S(c+1,3c+2,3), 0 <= c < 3 where
S(c+1,3c+2,3) =
A054252(2,3), c = 0
A236679(5,3), c = 1
A236560(8,3), c = 2
Comments