A236564 Difference between 2^(2n-1) and the nearest square.
1, -1, -4, 7, -17, 23, -89, 7, 28, 112, 448, 1792, -4417, 5503, 22012, -4633, -18532, -74128, -296512, 296863, 1187452, -1181833, -4727332, 4817239, 19268956, -17830441, -71321764, 94338007, 377352028, -9092137, -36368548, -145474192, -581896768, -2327587072, -9310348288
Offset: 1
Examples
a(1) = 2^1 - 1^2 = 1. a(2) = 2^3 - 3^2 = -1. a(3) = 2^5 - 6^2 = 32 - 36 = -4.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..500
Programs
-
Maple
A236564 := proc(n) local x,sq,lo,hi ; x := 2^(2*n-1) ; sq := isqrt(x) ; lo := sq^2 ; hi := (sq+1)^2 ; if abs(x-lo) < abs(x-hi) then x-lo ; else x-hi ; end if; end proc: # R. J. Mathar, Mar 13 2014
-
Mathematica
Table[2^n - Round[Sqrt[2^n]]^2, {n, 1, 79, 2}] (* Alonso del Arte, Feb 23 2014 *)
-
Python
def isqrt(a): sr = 1 << (int.bit_length(int(a)) >> 1) while a < sr*sr: sr>>=1 b = sr>>1 while b: s = sr + b if a >= s*s: sr = s b>>=1 return sr for n in range(47): nn = 2**(2*n+1) a = isqrt(nn) d1 = nn - a*a d2 = (a+1)**2 - nn if d2 < d1: d1 = -d2 print(str(d1), end=',')
Formula
If A201125(n) < A238454(n), a(n) = A201125(n), otherwise a(n) = -A238454(n). [Negative terms are for cases where the nearest square is above 2^(2n-1), not below it.] - Antti Karttunen, Feb 27 2014
Comments