A236575 Number of primes between successive numbers that are not squarefree.
2, 0, 1, 1, 1, 1, 1, 0, 0, 0, 2, 0, 1, 2, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 2, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 2, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1
Offset: 1
Keywords
Examples
A013929(n) = 4, 8, 9, 12, 16, 18, 20, ... a(1) = 2 because there exists 2 primes between 4 and 8; a(2) = 0 because there are no prime between 8 and 9; a(3) = 1 because there exists 1 prime between 9 and 12.
Links
- Michel Lagneau, Table of n, a(n) for n = 1..10000
Crossrefs
Cf. A013929.
Programs
-
Maple
sqf:={}:t:= n-> product(ithprime(k), k=1..n): for n from 1 to 400 do:if t(n) mod n <>0 then sqf:=sqf union {n} fi od:n1:=nops(sqf): for m from 1 to n1-1 do :c:=0:i1 :=sqf[m] :i2 :=sqf[m+1] :for p from i1+1 to i2-1 do:if type(p,prime)=true then c:=c+1:else fi:od: printf(`%d, `,c):od:
-
Mathematica
lst={};aa={};bb={};Do[If[MemberQ[aa,EulerPhi[n]/n],AppendTo[bb,n],AppendTo[aa,EulerPhi[n]/n]],{n,1,1000}];Do[p=0;Do[If[PrimeQ[a],p++],{a,bb[[n]]+1,bb[[n+1]]-1}];AppendTo[lst,p],{n,100}];lst
Comments