cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A236579 The number of tilings of a 5 X (4n) floor with 1 X 4 tetrominoes.

Original entry on oeis.org

1, 3, 15, 75, 371, 1833, 9057, 44753, 221137, 1092699, 5399327, 26679563, 131831075, 651413681, 3218814561, 15905050017, 78591236385, 388340962771, 1918899743823, 9481812581835, 46852249642771
Offset: 0

Views

Author

R. J. Mathar, Jan 29 2014

Keywords

Comments

Tilings are counted irrespective of internal symmetry: Tilings that match each other after rotations and/or reflections are counted with their multiplicity.
Related to A002378 by an Invert Transform.

Crossrefs

Cf. A003269 (4Xn floor), A236580 - A236582, A109960.

Programs

  • Maple
    g := (1-x)^3/(-6*x+1+6*x^2-4*x^3+x^4) ;
    taylor(%,x=0,30) ; gfun[seriestolist](%) ;
    # Alternatively:
    a := n -> hypergeom([(n+1)/3, (n+2)/3, n/3 + 1, -n], [1/4, 1/2, 3/4], -27/128):
    seq(simplify(a(n)), n=0..20); # Peter Luschny, Nov 02 2017
  • Mathematica
    LinearRecurrence[{6, -6, 4, -1}, {1, 3, 15, 75}, 21] (* Jean-François Alcover, Jul 14 2018 *)

Formula

G.f.: (1-x)^3/(-6*x+1+6*x^2-4*x^3+x^4).
a(n) = Sum_{k = 0..n} binomial(n + 3*k, 4*k)*2^k = Sum_{k = 0..n} A109960(n,k)*2^k. - Peter Bala, Nov 02 2017
a(n) = hypergeom([(n+1)/3, (n+2)/3, n/3 + 1, -n], [1/4, 1/2, 3/4], -27/128). - Peter Luschny, Nov 02 2017