A236634 Number of unbalanced partitions of n: the largest part is not equal to the number of parts.
0, 2, 2, 4, 6, 10, 12, 20, 26, 38, 50, 70, 90, 124, 160, 212, 272, 356, 450, 582, 732, 932, 1166, 1470, 1824, 2280, 2814, 3486, 4280, 5268, 6428, 7864, 9552, 11614, 14044, 16990, 20450, 24626, 29524, 35392, 42272, 50472, 60060, 71444, 84734, 100432, 118736
Offset: 1
Keywords
Examples
For n = 5 we have: ------------------------------------------------------- Partitions Largest Number Dyson's of 5 part of parts rank Type ------------------------------------------------------- 5 5 - 1 = 4 unbalanced 4+1 4 - 2 = 2 unbalanced 3+2 3 - 2 = 1 unbalanced 3+1+1 3 - 3 = 0 balanced 2+2+1 2 - 3 = -1 unbalanced 2+1+1+1 2 - 4 = -2 unbalanced 1+1+1+1+1 1 - 5 = -4 unbalanced ------------------------------------------------------- There are 6 partitions whose rank is not 0, so a(5) = 6.
Programs
-
Mathematica
P = PartitionsP; a[n_] := P[n] - Sum[-(-1)^k (P[n - (3k^2 - k)/2] - P[n - (3k^2 + k)/2]), {k, 1, Floor[(1 + Sqrt[1 + 24n])/6]}]; a /@ Range[46] (* Jean-François Alcover, Jan 11 2020, after Wouter Meeussen in A047993 *)
Comments