cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A236692 Numbers k such that k+1, 2*k+1 and k^2+1 are primes.

Original entry on oeis.org

1, 2, 6, 36, 156, 210, 270, 306, 576, 690, 936, 966, 2136, 2310, 2550, 2706, 2850, 3390, 3966, 4026, 4176, 4260, 4566, 4590, 5226, 5430, 5850, 6120, 6216, 6360, 6420, 6546, 7410, 7536, 8940, 9126, 9240, 9276, 9900, 10530, 10836, 11286, 11586, 11886, 12390, 13680
Offset: 1

Views

Author

Alex Ratushnyak, Jan 30 2014

Keywords

Comments

Intersection of A070689 and {b(n)=A005382(n)-1}.

Crossrefs

Programs

  • Mathematica
    Select[Range[14000],AllTrue[{#+1,2#+1,#^2+1},PrimeQ]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Dec 27 2019 *)
  • PARI
    isok(n) = isprime(n+1)&&isprime(2*n+1)&&isprime(n^2+1); \\ Colin Barker, Jan 30 2014
  • Python
    import sympy
    from sympy import isprime
    for n in range(100000):
        if isprime(n+1) and isprime(n*2+1) and isprime(n*n+1): print(n, end=', ')