A236764 Numbers k such that k^3 +/- k +/- 1 are prime for all four possibilities.
15, 21, 15375, 25164, 53361, 95190, 110685, 115140, 133701, 139425, 140430, 140844, 189336, 217686, 220650, 266916, 272469, 289341, 344880, 364665, 377805, 382221, 390270, 415779, 454905, 539700, 561186, 567645, 575799, 584430, 603651, 722484
Offset: 1
Keywords
Examples
110685^3+110685+1 (1356020665779811), 110685^3+110685-1 (1356020665779809), 110685^3-110685+1 (1356020665558441) and 110685^3-110685-1 (1356020665558439) are all prime. Thus 110685 is a member of this sequence.
Links
- Daniel Starodubtsev, Table of n, a(n) for n = 1..10000
Programs
-
PARI
for(n=1, 800000, if(isprime(n^3+n+1)&&isprime(n^3-n+1)&&isprime(n^3+n-1)&&isprime(n^3-n-1), print1(n, ","))) \\ Colin Barker, Jan 31 2014
-
Python
import sympy from sympy import isprime {print(n) for n in range(10**6) if isprime(n**3+n+1) and isprime(n**3-n+1) and isprime(n**3+n-1) and isprime(n**3-n-1)}