cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A236800 Number T(n,k) of equivalence classes of ways of placing k 5 X 5 tiles in an n X n square under all symmetry operations of the square; irregular triangle T(n,k), n>=5, 0<=k<=floor(n/5)^2, read by rows.

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 1, 3, 1, 6, 1, 6, 12, 3, 1, 1, 10, 40, 44, 14, 1, 10, 97, 245, 174, 1, 15, 193, 925, 1234, 1, 15, 339, 2640, 6124, 1, 21, 555, 6617, 27074, 19336, 4785, 461, 23, 1
Offset: 5

Views

Author

Keywords

Comments

The first 11 rows of T(n,k) are:
.\ k 0 1 2 3 4 5 6 7 8 9
n
5 1 1
6 1 1
7 1 3
8 1 3
9 1 6
10 1 6 12 3 1
11 1 10 40 44 14
12 1 10 97 245 174
13 1 15 193 925 1234
14 1 15 339 2640 6124
15 1 21 555 6617 27074 19336 4785 461 23 1

Examples

			T(10,3) = 3 because the number of equivalence classes of ways of placing 3 5 X 5 square tiles in an 10 X 10 square under all symmetry operations of the square is 3. The portrayal of an example from each equivalence class is:
._______________      _______________      _______________
|       |       |    |       |_______|    |       |       |
|       |       |    |       |       |    |       |_______|
|   .   |   .   |    |   .   |       |    |   .   |       |
|       |       |    |       |   .   |    |       |       |
|_______|_______|    |_______|       |    |_______|   .   |
|       |       |    |       |_______|    |       |       |
|       |       |    |       |       |    |       |_______|
|   .   |       |    |   .   |       |    |   .   |       |
|       |       |    |       |       |    |       |       |
|_______|_______|    |_______|_______|    |_______|_______|
		

Crossrefs

Formula

It appears that:
T(n,0) = 1, n>= 5
T(n,1) = (floor((n-5)/2)+1)*(floor((n-5)/2+2))/2, n >= 5
T(c+2*5,2) = A131474(c+1)*(5-1) + A000217(c+1)*floor(5^2/4) + A014409(c+2), 0 <= c < 5, c even
T(c+2*5,2) = A131474(c+1)*(5-1) + A000217(c+1)*floor((5-1)(5-3)/4) + A014409(c+2), 0 <= c < 5, c odd
T(c+2*5,3) = (c+1)(c+2)/2(2*A002623(c-1)*floor((5-c-1)/2) + A131941(c+1)*floor((5-c)/2)) + S(c+1,3c+2,3), 0 <= c < 5 where
S(c+1,3c+2,3) =
A054252(2,3), c = 0
A236679(5,3), c = 1
A236560(8,3), c = 2
A236757(11,3), c = 3
A236800(14,3), c = 4