A236832 Number of ways to write 2*n - 1 = p + q + r (p <= q <= r) with p, q and r terms of A234695.
0, 0, 0, 1, 2, 2, 2, 2, 3, 2, 3, 3, 2, 4, 3, 3, 4, 3, 4, 4, 4, 4, 3, 5, 5, 7, 6, 3, 5, 4, 5, 4, 5, 6, 6, 6, 3, 5, 7, 6, 6, 3, 5, 8, 8, 8, 6, 7, 8, 7, 6, 5, 8, 9, 10, 5, 7, 9, 10, 11, 5, 8, 9, 9, 11, 6, 8, 9, 10, 8, 2, 9, 10, 9, 11, 6, 8, 11, 12, 7, 7, 10, 9, 10, 8, 7, 11, 10, 11, 6, 8, 12, 14, 13, 8, 10, 11, 12, 12, 10
Offset: 1
Keywords
Examples
a(4) = 1 since 2*4 - 1 = 2 + 2 + 3 with 2 and 3 terms of A234695. a(5) = 2 since 2*5 - 1 = 2 + 2 + 5 = 3 + 3 + 3 with 2, 3, 5 terms of A234695.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..5000
- H. A. Helfgott, Minor arcs for Goldbach's problem, arXiv:1205.5252 [math.NT], 2012-2013.
- H. A. Helfgott, Major arcs for Goldbach's theorem, arXiv:1305.2897 [math.NT], 2013-2014.
- Z.-W. Sun, Problems on combinatorial properties of primes, arXiv:1402.6641 [math.NT], 2014-2016.
Programs
-
Mathematica
p[n_]:=PrimeQ[Prime[n]-n+1] q[n_]:=PrimeQ[n]&&p[n] a[n_]:=Sum[If[p[Prime[i]]&&p[Prime[j]]&&q[2n-1-Prime[i]-Prime[j]],1,0],{i,1,PrimePi[(2n-1)/3]},{j,i,PrimePi[(2n-1-Prime[i])/2]}] Table[a[n],{n,1,100}]
Comments