cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A238766 Number of ordered ways to write n = k + m (k > 0 and m > 0) such that prime(prime(k)) - prime(k) + 1, prime(prime(2*k+1)) - prime(2*k+1) + 1 and prime(prime(m)) - prime(m) + 1 are all prime.

Original entry on oeis.org

0, 1, 1, 2, 3, 2, 4, 3, 2, 4, 1, 4, 3, 4, 6, 3, 6, 3, 3, 4, 3, 3, 2, 6, 4, 4, 5, 3, 3, 5, 4, 4, 4, 3, 4, 3, 6, 5, 2, 6, 3, 4, 6, 1, 3, 3, 6, 4, 6, 6, 4, 4, 5, 5, 1, 5, 3, 3, 6, 5, 6, 4, 7, 6, 8, 6, 8, 3, 9, 8, 9, 10, 8, 11, 6, 10, 10, 4, 5, 4
Offset: 1

Views

Author

Zhi-Wei Sun, Mar 05 2014

Keywords

Comments

Conjecture: a(n) > 0 for all n > 1, and a(n) = 1 only for n = 2, 3, 11, 44, 55, 149, 371.
This suggests that there are infinitely many prime pairs {p, q} with 2*pi(p) + 1 = pi(q) such that prime(p) - p + 1 and prime(q) - q + 1 are both prime.

Examples

			a(3) = 1 since 3 = 1 + 2 with prime(prime(1)) - prime(1) + 1 = prime(2) - 2 + 1 = 2, prime(prime(2*1+1)) - prime(2*1+1) + 1 = prime(5) - 5 + 1 = 7 and prime(prime(2)) - prime(2) + 1 = prime(3) - 3 + 1 = 3 all prime.
a(371) = 1 since 371 = 66 + 305 with prime(prime(66)) - prime(66) + 1 = prime(317) - 317 + 1 = 2099 - 316 = 1783, prime(prime(2*66+1)) - prime(2*66+1) + 1 = prime(751) - 751 + 1 = 5701 - 750 = 4951 and prime(prime(305)) - prime(305) + 1 = prime(2011) - 2011 + 1 = 17483 - 2010 = 15473 all prime.
		

Crossrefs

Programs

  • Mathematica
    pq[k_]:=PrimeQ[Prime[Prime[k]]-Prime[k]+1]
    a[n_]:=Sum[If[pq[k]&&pq[2k+1]&&pq[n-k],1,0],{k,1,n-1}]
    Table[a[n],{n,1,80}]

A237291 Number of ways to write 2*n - 1 = p + q + r (p <= q <= r) with p, q, r, pi(p), pi(q), pi(r) all prime, where pi(x) denotes the number of primes not exceeding x (A000720).

Original entry on oeis.org

0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 0, 1, 2, 0, 2, 3, 1, 0, 2, 2, 1, 3, 2, 1, 1, 1, 1, 2, 3, 2, 2, 0, 3, 4, 2, 2, 3, 2, 1, 3, 4, 1, 5, 2, 1, 2, 3, 4, 3, 1, 1, 3, 2, 2, 4, 3, 2, 3, 3, 1, 5, 5, 1, 3, 4, 2, 3, 4, 4, 2, 4, 2, 3, 4, 2, 2
Offset: 1

Views

Author

Zhi-Wei Sun, Feb 06 2014

Keywords

Comments

Conjecture: a(n) > 0 for all n > 36.
This is stronger than Goldbach's weak conjecture finally proved by H. A. Helfgott in 2013.

Examples

			a(16) = 1 since 2*16 - 1 = 3 + 11 + 17 with 3, 11, 17, pi(3) = 2, pi(11) = 5 and pi(17) = 7 all prime.
a(179) = 1 since 2*179 - 1 = 83 + 83 + 191 with 83, 191, pi(83) = 23 and pi(191) = 43 all prime.
		

Crossrefs

Programs

  • Mathematica
    p[n_]:=PrimeQ[n]&&PrimeQ[PrimePi[n]]
    a[n_]:=Sum[If[p[2n-1-Prime[Prime[i]]-Prime[Prime[j]]],1,0],{i,1,PrimePi[PrimePi[(2n-1)/3]]},{j,i,PrimePi[PrimePi[(2n-1-Prime[Prime[i]])/2]]}]
    Table[a[n],{n,1,80}]

A238756 Number of ordered ways to write n = k + m (k > 0 and m > 0) such that 2*k + 1, prime(prime(k)) - prime(k) + 1 and prime(prime(m)) - prime(m) + 1 are all prime.

Original entry on oeis.org

0, 1, 2, 3, 3, 2, 3, 3, 3, 4, 2, 5, 4, 3, 6, 4, 4, 3, 3, 6, 5, 5, 4, 6, 6, 5, 6, 2, 7, 5, 5, 6, 4, 4, 4, 5, 5, 8, 2, 5, 4, 5, 8, 2, 5, 2, 7, 4, 8, 6, 4, 5, 3, 8, 4, 7, 5, 3, 7, 7, 5, 7, 5, 7, 9, 8, 7, 5, 9, 7, 10, 9, 7, 7, 6, 9, 10, 4, 5, 5
Offset: 1

Views

Author

Zhi-Wei Sun, Mar 05 2014

Keywords

Comments

Conjecture: a(n) > 0 for all n > 1.
We have verified this for n up to 10^7.
The conjecture suggests that there are infinitely many primes p with 2*pi(p) + 1 and prime(p) - p + 1 both prime.

Examples

			a(6) = 2 since 6 = 2 + 4 with 2*2 + 1 = 5, prime(prime(2)) - prime(2) + 1 = prime(3) - 3 + 1 = 3 and prime(prime(4)) - prime(4) + 1 = prime(7) - 7 + 1 = 17 - 6 = 11 all prime, and 6 = 3 + 3 with 2*3 + 1 = 7 and prime(prime(3)) - prime(3) + 1 = prime(5) - 5 + 1 = 11 - 4 = 7 both prime.
		

Crossrefs

Programs

  • Mathematica
    p[k_]:=PrimeQ[Prime[Prime[k]]-Prime[k]+1]
    a[n_]:=Sum[If[PrimeQ[2k+1]&&p[k]&&p[n-k],1,0],{k,1,n-1}]
    Table[a[n],{n,1,80}]

A260753 Least positive integer k such that both k and k*n belong to the set {m>0: prime(prime(m))-prime(m)+1 = prime(p) for some prime p}.

Original entry on oeis.org

2, 2, 2279, 5806, 4, 1135, 816, 6556, 725, 2, 1333, 10839, 27, 829, 2279, 2838, 3881, 6540, 2564, 2, 7830, 6540, 27, 4905, 6121, 8220, 316, 1061, 2, 14691, 2, 1168, 738, 4707, 785, 12467, 5492, 1447, 542, 538, 12840, 829, 4732, 5637, 785, 1246, 1198, 433, 58, 573, 26280, 17387, 316, 430, 1198, 4315, 4315, 1479, 4315, 1497
Offset: 1

Views

Author

Zhi-Wei Sun, Aug 18 2015

Keywords

Comments

Conjecture: For any s and t in the set {1,-1}, every positive rational number r can be written as m/n with m and n in the set {k>0: prime(prime(k))+s*prime(k)+t = prime(p) for some prime p}.
In the case s = -1 and t = 1, the conjecture implies that A261136 has infinitely many terms.

Examples

			a(3) = 2279 since  prime(prime(2279))-prime(2279)+1 = prime(20147)-20147+1 = 226553-20146 = 206407 = prime(18503) with 18503 prime, and  prime(prime(2279*3))-prime(2279*3)+1 = prime(68777)-68777+1 = 865757-68776 = 796981 = prime(63737) with 63737 prime.
		

References

  • Zhi-Wei Sun, Problems on combinatorial properties of primes, in: M. Kaneko, S. Kanemitsu and J. Liu (eds.), Number Theory: Plowing and Starring through High Wave Forms, Proc. 7th China-Japan Seminar (Fukuoka, Oct. 28 - Nov. 1, 2013), Ser. Number Theory Appl., Vol. 11, World Sci., Singapore, 2015, pp. 169-187.

Crossrefs

Programs

  • Mathematica
    f[n_]:=Prime[Prime[n]]-Prime[n]+1
    PQ[p_]:=PrimeQ[p]&&PrimeQ[PrimePi[p]]
    Do[k=0;Label[bb];k=k+1;If[PQ[f[k]]&&PQ[f[k*n]],Goto[aa],Goto[bb]];Label[aa];Print[n," ", k];Continue,{n,1,60}]
Showing 1-4 of 4 results.