cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A236841 Numbers that occur as results of downward remultiplication (N -> GF(2)[X]) of some number; A234741 sorted and duplicates removed.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70
Offset: 1

Views

Author

Antti Karttunen, Jan 31 2014

Keywords

Comments

The range of A234741: numbers n which encode by their binary representation a polynomial in GF(2)[X] whose multiset of irreducible polynomial factors P, Q, ..., W (where n = P x Q x ... x W, where P, Q, ..., W are irreducible polynomials encoded by A014580, and are not necessarily distinct, and x stands for carryless multiplication of such polynomials: A048720) can be grouped to at least one such multiset (P x Q, W), (P x W, Q), (P, Q x W), (P x Q x W), etc., in such a way that all its members are primes.
Above condition implies that none of the terms of A091214 occur here.

Examples

			17 is a term because it factors as 3 x 3 x 3 x 3 in GF(2)[X], and these can be grouped as (3x3x3x3), (3x3 * 3x3), (3 * 3 * 3x3) and (3 * 3 * 3 * 3) that is, as 17, (5 * 5), (3 * 3 * 5) and (3 * 3 * 3 * 3) which give the four different k, 17, 25, 45 and 81, for which A234741(k) = 17. (Note that A236833(17) = 4. In the grouping (3 * 3x3x3) = (3 * 15) 15 is not a prime, so it is discarded,)
25 is not a term because it is an irreducible in GF(2)[X], but not a prime in N.
43 = 3 x 25 is a term because 43 itself is a prime in N.
125 = 3 x 3 x 25 is a term, because both 3 and (3 x 25) = 43 are primes in N. Their product 3*43 = 129 gives one such k that A234741(k) = 125.
1951 = 25 x 87 is a member, as although both 25 and 87 are in A091214, 1951 is itself a prime in N.
		

Crossrefs

Positions of nonzero terms in A236833.
Complement of A236834.
Characteristic function: A236861.
A subsequence: A236839.

Formula

Use the characteristic function A236861(n) to determine whether n is a term of this sequence or not. Specifically, all primes occur in this sequence. A composite number n occurs only if there exists at least one such pair of k, m < n that n = A048720(k,m) and k and m both occur here. This implies that none of the terms of A091214 are present.