cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A236846 Least inverse of A234742: a(n) = minimal k such that when it is remultiplied "upwards", from GF(2)[X] to N, the result is n, and 0 if no such k exists.

Original entry on oeis.org

0, 1, 2, 3, 4, 0, 6, 7, 8, 5, 0, 11, 12, 13, 14, 0, 16, 0, 10, 19, 0, 9, 22, 0, 24, 25, 26, 15, 28, 0, 0, 31, 32, 29, 0, 0, 20, 37, 38, 23, 0, 41, 18, 0, 44, 0, 0, 47, 48, 21, 50, 0, 52, 0, 30, 55, 56, 53, 0, 59, 0, 61, 62, 27, 64, 0, 58, 67, 0, 0, 0, 0, 40, 73, 74, 43, 76, 49, 46, 0, 0, 17, 82, 0, 36, 0, 0, 87, 88, 0, 0, 35
Offset: 0

Views

Author

Antti Karttunen, Jan 31 2014

Keywords

Comments

Apart from zero, each term occurs at most once. 91 is the smallest positive integer not present in this sequence.
Note that in contrast to the reciprocal case, where A234742(n) >= A236837(n) for all n [the former sequence gives the absolute upper bound for the latter], here it is not guaranteed that A234741(n) <= a(n) whenever a(n) > 0. For example, a(25)=25 and A234741(25)=17, and 25-17 = 8. On the other hand, a(75)=43, but A234741(75)=51, and 43-51 = -8.

Crossrefs

Differs from A236847 for the first time at n=91, where a(91)=35, while A236847(91)=91.
A236844 gives the positions of zeros.
Cf. A234742.
Cf. also A236836, A236837.

Programs

  • Scheme
    (define (A236846 n) (let loop ((k n) (minv 0)) (cond ((zero? k) minv) ((= (A234742 k) n) (loop (- k 1) k)) (else (loop (- k 1) minv)))))

Formula

a(n) = minimal k such that A234742(k) = n, and 0 if no such k exists.
For all n, a(n) <= n.