cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A236851 Remultiply n first "upward", from GF(2)[X] to N, and then remultiply that result back "downward", from N to GF(2)[X]: a(n) = A234741(A234742(n)).

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 17, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 51, 44, 45, 46, 47, 48, 49, 34, 51, 52, 53, 54, 39, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67
Offset: 0

Views

Author

Antti Karttunen, Feb 02 2014

Keywords

Examples

			5 ('101' in binary) = 3 x 3 (3 = '11' in binary). 3 is in A091206, so it stays intact, and 3 x 3 = 5, thus a(5)=5.
25 ('11001' in binary) = 25 (25 is irreducible in GF(2)[X]). However, it divides as 5*5 in Z, so the result is 5 x 5 = 17, thus a(25)=17, 25 being the least n which is not fixed by this function.
43 ('101011' in binary) = 3 x 25, of which the latter factor divides to 5*5, thus the result is 3 x 5 x 5 = 3 x 17 = 15 x 5 = 51.
		

Crossrefs

A236850 gives the fixed points.

Programs

Formula

a(n) = A234741(A234742(n)).
To compute a(n): factor n as a polynomial over GF(2) (where n is mapped to such polynomials via the binary representation of n), that is, find first a unique multiset of terms i, j, ..., k from A014580 for which i x j x ... x k = n, where x stands for the carryless multiplication (A048720). Then divide from those i, j, ..., k the ones that are in A091214 (composite integers in N) to their constituent prime factors (in N), and multiply all back together (including the factors that are in A091206 and thus not changed) with the carryless multiplication (A048720).
Compare this to how primes are "broken" in a similar way in A235027 (cf. also A235145).