cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A236865 Number T(n,k) of equivalence classes of ways of placing k 7 X 7 tiles in an n X n square under all symmetry operations of the square; irregular triangle T(n,k), n>=7, 0<=k<=floor(n/7)^2, read by rows.

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 1, 3, 1, 6, 1, 6, 1, 10, 1, 10, 20, 4, 1, 1, 15, 65, 59, 14, 1, 15, 153, 329, 174, 1, 21, 295, 1225, 1234, 1, 21, 507, 3465, 6124, 1, 28, 810, 8358, 23259, 1, 28, 1214, 17710, 73204
Offset: 7

Views

Author

Keywords

Comments

The first 13 rows of T(n,k) are:
.\ k 0 1 2 3 4 5 6 7 8 9
n
7 1 1
8 1 1
9 1 3
10 1 3
11 1 6
12 1 6
13 1 10
14 1 10 20 4 1
15 1 15 65 59 14
16 1 15 153 329 174
17 1 21 295 1225 1234
18 1 21 507 3465 6124
19 1 28 810 8358 23259
20 1 28 1214 17710 73204

Examples

			T(14,3) = 4 because the number of equivalent classes of ways of placing 3 7 X 7 square tiles in an 14 X 14 square under all symmetry operations of the square is 4. The portrayal of an example from each equivalence class is:
.___________________          ___________________
|         |         |        |         |_________|
|         |         |        |         |         |
|         |         |        |         |         |
|    .    |    .    |        |    .    |         |
|         |         |        |         |    .    |
|         |         |        |         |         |
|_________|_________|        |_________|         |
|         |         |        |         |_________|
|         |         |        |         |         |
|         |         |        |         |         |
|    .    |         |        |    .    |         |
|         |         |        |         |         |
|         |         |        |         |         |
|_________|_________|        |_________|_________|
.
.___________________          ___________________
|         |         |        |         |         |
|         |_________|        |         |         |
|         |         |        |         |_________|
|    .    |         |        |    .    |         |
|         |         |        |         |         |
|         |    .    |        |         |         |
|_________|         |        |_________|    .    |
|         |         |        |         |         |
|         |_________|        |         |         |
|         |         |        |         |_________|
|    .    |         |        |    .    |         |
|         |         |        |         |         |
|         |         |        |         |         |
|_________|_________|        |_________|_________|
		

Crossrefs

Formula

It appears that:
T(n,0) = 1, n>= 7
T(n,1) = (floor((n-7)/2)+1)*(floor((n-7)/2+2))/2, n >= 7
T(c+2*7,2) = A131474(c+1)*(7-1) + A000217(c+1)*floor(7^2/4) + A014409(c+2), 0 <= c < 7, c even
T(c+2*7,2) = A131474(c+1)*(7-1) + A000217(c+1)*floor((7-1)(7-3)/4) + A014409(c+2), 0 <= c < 7, c odd
T(c+2*7,3) = (c+1)(c+2)/2(2*A002623(c-1)*floor((7-c-1)/2) + A131941(c+1)*floor((7-c)/2)) + S(c+1,3c+2,3), 0 <= c < 7 where
S(c+1,3c+2,3) =
A054252(2,3), c = 0
A236679(5,3), c = 1
A236560(8,3), c = 2
A236757(11,3), c = 3
A236800(14,3), c = 4
A236829(17,3), c = 5
A236865(20,3), c = 6