A236912 Number of partitions of n such that no part is a sum of two other parts.
1, 1, 2, 3, 4, 6, 8, 12, 14, 20, 25, 34, 40, 54, 64, 85, 98, 127, 149, 189, 219, 277, 316, 395, 456, 557, 638, 778, 889, 1070, 1226, 1461, 1667, 1978, 2250, 2645, 3019, 3521, 3997, 4652, 5267, 6093, 6909, 7943, 8982, 10291, 11609, 13251, 14947, 16984, 19104
Offset: 0
Keywords
Examples
Of the 11 partitions of 6, only these 3 include a part that is a sum of two other parts: [3,2,1], [2,2,1,1], [2,1,1,1,1]. Thus, a(6) = 11 - 3 = 8. From _Gus Wiseman_, Aug 09 2023: (Start) The a(1) = 1 through a(8) = 14 partitions: (1) (2) (3) (4) (5) (6) (7) (8) (11) (21) (22) (32) (33) (43) (44) (111) (31) (41) (42) (52) (53) (1111) (221) (51) (61) (62) (311) (222) (322) (71) (11111) (411) (331) (332) (3111) (421) (521) (111111) (511) (611) (2221) (2222) (4111) (3311) (31111) (5111) (1111111) (41111) (311111) (11111111) (End)
Crossrefs
Programs
-
Mathematica
z = 20; t = Map[Count[Map[Length[Cases[Map[Total[#] &, Subsets[#, {2}]], Apply[Alternatives, #]]] &, IntegerPartitions[#]], 0] &, Range[z]] (* A236912 *) u = PartitionsP[Range[z]] - t (* A237113, Peter J. C. Moses, Feb 03 2014 *) Table[Length[Select[IntegerPartitions[n],Intersection[#,Total/@Subsets[#,{2}]]=={}&]],{n,0,15}] (* Gus Wiseman, Aug 09 2023 *)
Extensions
a(0)=1 prepended by Alois P. Heinz, Sep 17 2023
Comments