A236914 Number of partitions of 2n+1 of type OO (see Comments).
0, 1, 3, 7, 14, 27, 49, 86, 146, 242, 392, 623, 973, 1498, 2274, 3411, 5059, 7427, 10801, 15572, 22267, 31602, 44533, 62338, 86716, 119918, 164903, 225566, 306993, 415814, 560641, 752622, 1006132, 1339677, 1776980, 2348384, 3092594, 4058848, 5309608, 6923959
Offset: 0
Examples
The partitions of 5 of type OO are [4,1], [3,2], [2,1,1,1], so that a(2) = 3. type/k . 1 .. 2 .. 3 .. 4 .. 5 .. 6 .. 7 .. 8 ... 9 ... 10 .. 11 EO ..... 0 .. 1 .. 0 .. 2 .. 0 .. 5 .. 0 .. 10 .. 0 ... 20 .. 0 OE ..... 1 .. 0 .. 2 .. 0 .. 4 .. 0 .. 8 .. 0 ... 16 .. 0 ... 29 EE ..... 0 .. 1 .. 0 .. 3 .. 0 .. 6 .. 0 .. 12 .. 0 ... 22 .. 0 OO ..... 0 .. 0 .. 1 .. 0 .. 3 .. 0 .. 7 .. 0 ... 14 .. 0 ... 27
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..10000 (terms 0..1000 from Alois P. Heinz)
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0, [1, 0$3], `if`(i<1, [0$4], b(n, i-1)+`if`(i>n, [0$4], (p-> `if`(irem(i, 2)=0, [p[3], p[4], p[1], p[2]], [p[2], p[1], p[4], p[3]]))(b(n-i, i))))) end: a:= n-> b(2*n+1$2)[4]: seq(a(n), n=0..40); # Alois P. Heinz, Feb 16 2014
-
Mathematica
z = 25; m1 = Map[Length[Select[Map[{Count[#, True], Count[#, False]} &, OddQ[IntegerPartitions[2 #]]], EvenQ[(*Odd*)First[#]] && OddQ[(*Even*)Last[#]] &]] &, Range[z]]; m2 = Map[Length[Select[Map[{Count[#, True], Count[#, False]} &, OddQ[IntegerPartitions[2 # - 1]]], OddQ[(*Odd*)First[#]] && EvenQ[(*Even*)Last[#]] &]] &, Range[z]]; m3 = Map[Length[Select[Map[{Count[#, True], Count[#, False]} &, OddQ[IntegerPartitions[2 #]]], EvenQ[(*Odd*)First[#]] && EvenQ[(*Even*)Last[#]] &]] &, Range[z]] ; m4 = Map[Length[Select[Map[{Count[#, True], Count[#, False]} &, OddQ[IntegerPartitions[2 # - 1]]], OddQ[(*Odd*)First[#]] && OddQ[(*Even*)Last[#]] &]] &, Range[z]]; m1 (* A236559, type EO*) m2 (* A160786, type OE*) m3 (* A236913, type EE*) m4 (* A236914, type OO*) (* Peter J. C. Moses, Feb 03 2014 *) b[n_, i_] := b[n, i] = If[n == 0, {1, 0, 0, 0}, If[i < 1, {0, 0, 0, 0}, b[n, i - 1] + If[i > n, {0, 0, 0, 0}, Function[p, If[Mod[i, 2] == 0, p[[{3, 4, 1, 2}]], p[[{2, 1, 4, 3}]]]][b[n-i, i]]]]]; a[n_] := b[2*n+1, 2*n+1][[4]]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Oct 27 2015, after Alois P. Heinz *)
Extensions
More terms from Alois P. Heinz, Feb 16 2014
Comments