A236918 Triangle read by rows: Catalan triangle of the k-Fibonacci sequence.
1, 1, 1, 1, 2, 3, 1, 3, 7, 8, 1, 4, 12, 22, 24, 1, 5, 18, 43, 73, 75, 1, 6, 25, 72, 156, 246, 243, 1, 7, 33, 110, 283, 564, 844, 808, 1, 8, 42, 158, 465, 1092, 2046, 2936, 2742, 1, 9, 52, 217, 714, 1906, 4178, 7449, 10334, 9458, 1, 10, 63, 288, 1043, 3096, 7670, 15904, 27231, 36736, 33062
Offset: 1
Examples
Triangle begins: 1; 1, 1; 1, 2, 3; 1, 3, 7, 8; 1, 4, 12, 22, 24; 1, 5, 18, 43, 73, 75; 1, 6, 25, 72, 156, 246, 243; 1, 7, 33, 110, 283, 564, 844, 808; 1, 8, 42, 158, 465, 1092, 2046, 2936, 2742; 1, 9, 52, 217, 714, 1906, 4178, 7449, 10334, 9458; 1, 10, 63, 288, 1043, 3096, 7670, 15904, 27231, 36736, 33062; ... - Extended by _Philippe Deléham_, Feb 10 2014
Links
- G. C. Greubel, Rows n = 1..50 of the triangle, flattened
- Sergio Falcon, Catalan transform of the K-Fibonacci sequence, Commun. Korean Math. Soc. 28 (2013), No. 4, pp. 827-832.
Programs
-
Mathematica
P[n_, x_]:= P[n,x]= If[n==0, 1, Sum[(j/(2*n-j))*Binomial[2*n-j, n-j]*Fibonacci[j, 1/x] *x^(n-1), {j,0,n}]]; T[n_, k_]:= Coefficient[P[n, x], x, k]; Table[T[n, k], {n,10}, {k, 0, n-1}]//Flatten (* G. C. Greubel, Jun 14 2022 *)
-
SageMath
def f(n,x): return sum( binomial(n-j-1, j)*x^(n-2*j-1) for j in (0..(n-1)//2) ) def p(n,x): if (n==0): return 1 else: return sum( (j/(2*n-j))*binomial(2*n-j, n-j)*x^(n-1)*f(j, 1/x) for j in (0..n) ) def A236918(n,k): return ( p(n,x) ).series(x, n+1).list()[k] flatten([[A236918(n,k) for k in (0..n-1)] for n in (1..12)]) # G. C. Greubel, Jun 14 2022
Formula
T(n, k) = coefficient of [x^k]( p(n, x) ), where p(n, x) = Sum_{j=0..n} (j/(2*n-j))*binomial(2*n-j, n-j)*x^(n-1)*Fibonacci(j, 1/x) with p(0, x) = 1 and Fibonacci(n, x) are the Fibonacci polynomials. - G. C. Greubel, Jun 14 2022
Extensions
More terms from Philippe Deléham, Feb 09 2014
Comments