cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A236918 Triangle read by rows: Catalan triangle of the k-Fibonacci sequence.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 1, 3, 7, 8, 1, 4, 12, 22, 24, 1, 5, 18, 43, 73, 75, 1, 6, 25, 72, 156, 246, 243, 1, 7, 33, 110, 283, 564, 844, 808, 1, 8, 42, 158, 465, 1092, 2046, 2936, 2742, 1, 9, 52, 217, 714, 1906, 4178, 7449, 10334, 9458, 1, 10, 63, 288, 1043, 3096, 7670, 15904, 27231, 36736, 33062
Offset: 1

Views

Author

N. J. A. Sloane, Feb 09 2014

Keywords

Comments

Reversal of the Riordan array (f(x), x*f(x)) where f(x) is the g.f. of A000958. - Philippe Deléham, Feb 10 2014
Row sums are in A109262. - Philippe Deléham, Feb 10 2014

Examples

			Triangle begins:
  1;
  1,  1;
  1,  2,  3;
  1,  3,  7,   8;
  1,  4, 12,  22,   24;
  1,  5, 18,  43,   73,   75;
  1,  6, 25,  72,  156,  246,  243;
  1,  7, 33, 110,  283,  564,  844,   808;
  1,  8, 42, 158,  465, 1092, 2046,  2936,  2742;
  1,  9, 52, 217,  714, 1906, 4178,  7449, 10334,  9458;
  1, 10, 63, 288, 1043, 3096, 7670, 15904, 27231, 36736, 33062;
  ... - Extended by _Philippe Deléham_, Feb 10 2014
		

Crossrefs

Diagonals give A000958, A114495.
Cf. A109262 (row sums).

Programs

  • Mathematica
    P[n_, x_]:= P[n,x]= If[n==0, 1, Sum[(j/(2*n-j))*Binomial[2*n-j, n-j]*Fibonacci[j, 1/x] *x^(n-1), {j,0,n}]];
    T[n_, k_]:= Coefficient[P[n, x], x, k];
    Table[T[n, k], {n,10}, {k, 0, n-1}]//Flatten (* G. C. Greubel, Jun 14 2022 *)
  • SageMath
    def f(n,x): return sum( binomial(n-j-1, j)*x^(n-2*j-1) for j in (0..(n-1)//2) )
    def p(n,x):
        if (n==0): return 1
        else: return sum( (j/(2*n-j))*binomial(2*n-j, n-j)*x^(n-1)*f(j, 1/x) for j in (0..n) )
    def A236918(n,k): return ( p(n,x) ).series(x, n+1).list()[k]
    flatten([[A236918(n,k) for k in (0..n-1)] for n in (1..12)]) # G. C. Greubel, Jun 14 2022

Formula

T(n, k) = coefficient of [x^k]( p(n, x) ), where p(n, x) = Sum_{j=0..n} (j/(2*n-j))*binomial(2*n-j, n-j)*x^(n-1)*Fibonacci(j, 1/x) with p(0, x) = 1 and Fibonacci(n, x) are the Fibonacci polynomials. - G. C. Greubel, Jun 14 2022

Extensions

More terms from Philippe Deléham, Feb 09 2014