cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A236923 Number of integer solutions to a^2 + b^2 + c^2 + 4*d^2 = n.

Original entry on oeis.org

1, 6, 12, 8, 8, 36, 48, 16, 24, 78, 72, 24, 32, 84, 96, 48, 24, 108, 156, 40, 48, 192, 144, 48, 96, 186, 168, 80, 64, 180, 288, 64, 24, 288, 216, 96, 104, 228, 240, 112, 144, 252, 384, 88, 96, 468, 288, 96, 96, 342, 372, 144, 112, 324, 480, 144, 192, 480, 360, 120, 192, 372, 384, 208, 24, 504, 576, 136, 144, 576, 576, 144, 312, 444, 456, 248, 160, 576, 672
Offset: 0

Views

Author

N. J. A. Sloane, Feb 14 2014

Keywords

Crossrefs

For number of solutions to a^2+b^2+c^2+k*d^2=n for k=1,2,3,4,5,6,7,8,12 see A000118, A236928, A236926, A236923, A236930, A236931, A236932, A236927, A236933.

Programs

  • Maple
    with(numtheory);
    s:=n-> if whattype(n) = integer then sigma(n) else 0; fi;
    f:=proc(n) global s;
      if (n mod 4) = 0 then 8*s(n/4)-32*s(n/16)
    elif (n mod 4) = 2 then 12*s(n/2)
    elif (n mod 4) = 3 then 2*s(n)
    else 6*s(n);
    fi; end;
    [seq(f(n),n=1..100)];
    # a(0)=1 must be added separately
  • Mathematica
    EllipticTheta[3, 0, q]^3*EllipticTheta[3, 0, q^4] + O[q]^80 // CoefficientList[#, q]& (* Jean-François Alcover, Mar 04 2023, after Ilya Gutkovskiy *)

Formula

See Maple code.
G.f.: theta_3(q)^3*theta_3(q^4), where theta_3() is the Jacobi theta function. - Ilya Gutkovskiy, Aug 01 2018