A236924 Number of integer solutions to a^2 + 2*b^2 + 2*c^2 + 4*d^2 = n.
1, 2, 4, 8, 8, 12, 16, 16, 24, 26, 24, 24, 32, 28, 32, 48, 24, 36, 52, 40, 48, 64, 48, 48, 96, 62, 56, 80, 64, 60, 96, 64, 24, 96, 72, 96, 104, 76, 80, 112, 144, 84, 128, 88, 96, 156, 96, 96, 96, 114, 124, 144, 112, 108, 160, 144, 192, 160, 120, 120, 192, 124, 128, 208, 24, 168, 192, 136, 144, 192, 192
Offset: 0
Keywords
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..10000
- Olivia X. M. Yao, Ernest X. W. Xia, Combinatorial proofs of five formulas of Liouville, Discrete Math. 318 (2014), 1--9. MR3141622.
Programs
-
Maple
with(LinearAlgebra); L:=proc(a,b,c,d,M) local n,hit,ul,vl,wl,xl,u,v,w,x,su,sv,sw,sx; hit:=Array(0..M); ul:=floor(sqrt(M/a)); vl:=floor(sqrt(M/b)); wl:=floor(sqrt(M/c)); xl:=floor(sqrt(M/d)); for u from -ul to ul do su:=a*u^2; for v from -vl to vl do sv:=su+b*v^2; for w from -wl to wl do sw:=sv+c*w^2; for x from -xl to xl do sx:=sw+d*x^2; if sx <= M then hit[sx]:=hit[sx]+1; fi; od; od; od; od; [seq(hit[n],n=0..M)]; end; L(1,2,2,4,60);
-
Mathematica
CoefficientList[EllipticTheta[3, 0, q]*EllipticTheta[3, 0, q^2]^2*EllipticTheta[3, 0, q^4] + O[q]^100, q] (* Jean-François Alcover, Feb 15 2023, after Ilya Gutkovskiy *)
Formula
Yao and Xia give an explicit formula for a(n) due to Liouville.
G.f.: theta_3(q)*theta_3(q^2)^2*theta_3(q^4), where theta_3() is the Jacobi theta function. - Ilya Gutkovskiy, Aug 03 2018