A236936 Number T(n,k) of equivalence classes of ways of placing k 9 X 9 tiles in an n X n square under all symmetry operations of the square; irregular triangle T(n,k), n>=9, 0<=k<=floor(n/9)^2, read by rows.
1, 1, 1, 1, 1, 3, 1, 3, 1, 6, 1, 6, 1, 10, 1, 10, 1, 15, 1, 15, 30, 5, 1, 1, 21, 96, 74, 14, 1, 21, 221, 413, 174, 1, 28, 417, 1525, 1234, 1, 28, 705, 4290, 6124, 1, 36, 1107, 10269, 23259, 1, 36, 1638, 21630, 73204, 1, 45, 2334, 41790, 199436
Offset: 9
Examples
The first 17 rows of T(n,k) are: .\ k 0 1 2 3 4 n 9 1 1 10 1 1 11 1 3 12 1 3 13 1 6 14 1 6 15 1 10 16 1 10 17 1 15 18 1 15 30 5 1 19 1 21 96 74 14 20 1 21 221 413 174 21 1 28 417 1525 1234 22 1 28 705 4290 6124 23 1 36 1107 10269 23259 24 1 36 1638 21630 73204 25 1 45 2334 41790 199436 . T(18,3) = 5 because the number of equivalence classes of ways of placing 3 9 X 9 square tiles in an 18 X 18 square under all symmetry operations of the square is 5.
Links
- Christopher Hunt Gribble, C++ program
- Christopher Hunt Gribble, Example graphics
Formula
It appears that:
T(n,0) = 1, n>= 9
T(n,1) = (floor((n-9)/2)+1)*(floor((n-9)/2+2))/2, n >= 9
T(c+2*9,2) = A131474(c+1)*(9-1) + A000217(c+1)*floor((9-1)(9-3)/4) + A014409(c+2), 0 <= c < 9, c odd
T(c+2*9,3) = (c+1)(c+2)/2(2*A002623(c-1)*floor((9-c-1)/2) + A131941(c+1)*floor((9-c)/2)) + S(c+1,3c+2,3), 0 <= c < 9 where
S(c+1,3c+2,3) =
A054252(2,3), c = 0
A236679(5,3), c = 1
A236560(8,3), c = 2
A236757(11,3), c = 3
A236800(14,3), c = 4
A236829(17,3), c = 5
A236865(20,3), c = 6
A236915(23,3), c = 7
A236936(26,3), c = 8