cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A236936 Number T(n,k) of equivalence classes of ways of placing k 9 X 9 tiles in an n X n square under all symmetry operations of the square; irregular triangle T(n,k), n>=9, 0<=k<=floor(n/9)^2, read by rows.

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 1, 3, 1, 6, 1, 6, 1, 10, 1, 10, 1, 15, 1, 15, 30, 5, 1, 1, 21, 96, 74, 14, 1, 21, 221, 413, 174, 1, 28, 417, 1525, 1234, 1, 28, 705, 4290, 6124, 1, 36, 1107, 10269, 23259, 1, 36, 1638, 21630, 73204, 1, 45, 2334, 41790, 199436
Offset: 9

Views

Author

Keywords

Examples

			The first 17 rows of T(n,k) are:
.\ k  0      1      2      3      4
n
9     1      1
10    1      1
11    1      3
12    1      3
13    1      6
14    1      6
15    1     10
16    1     10
17    1     15
18    1     15     30      5      1
19    1     21     96     74     14
20    1     21    221    413    174
21    1     28    417   1525   1234
22    1     28    705   4290   6124
23    1     36   1107  10269  23259
24    1     36   1638  21630  73204
25    1     45   2334  41790 199436
.
T(18,3) = 5 because the number of equivalence classes of ways of placing 3 9 X 9 square tiles in an 18 X 18 square under all symmetry operations of the square is 5.
		

Crossrefs

Formula

It appears that:
T(n,0) = 1, n>= 9
T(n,1) = (floor((n-9)/2)+1)*(floor((n-9)/2+2))/2, n >= 9
T(c+2*9,2) = A131474(c+1)*(9-1) + A000217(c+1)*floor(9^2/4) + A014409(c+2), 0 <= c < 9, c even
T(c+2*9,2) = A131474(c+1)*(9-1) + A000217(c+1)*floor((9-1)(9-3)/4) + A014409(c+2), 0 <= c < 9, c odd
T(c+2*9,3) = (c+1)(c+2)/2(2*A002623(c-1)*floor((9-c-1)/2) + A131941(c+1)*floor((9-c)/2)) + S(c+1,3c+2,3), 0 <= c < 9 where
S(c+1,3c+2,3) =
A054252(2,3), c = 0
A236679(5,3), c = 1
A236560(8,3), c = 2
A236757(11,3), c = 3
A236800(14,3), c = 4
A236829(17,3), c = 5
A236865(20,3), c = 6
A236915(23,3), c = 7
A236936(26,3), c = 8