A236939 Number T(n,k) of equivalence classes of ways of placing k 10 X 10 tiles in an n X n square under all symmetry operations of the square; irregular triangle T(n,k), n>=10, 0<=k<=floor(n/10)^2, read by rows.
1, 1, 1, 1, 1, 3, 1, 3, 1, 6, 1, 6, 1, 10, 1, 10, 1, 15, 1, 15, 1, 21, 36, 6, 1, 1, 21, 113, 80, 14, 1, 28, 261, 461, 174, 1, 28, 483, 1665, 1234, 1, 36, 819, 4725, 6124, 1, 36, 1266, 11193, 23259, 1, 45, 1878, 23646, 73204
Offset: 10
Examples
The first 17 rows of T(n,k) are: .\ k 0 1 2 3 4 n 10 1 1 11 1 1 12 1 3 13 1 3 14 1 6 15 1 6 16 1 10 17 1 10 18 1 15 19 1 15 20 1 21 36 6 1 21 1 21 113 80 14 22 1 28 261 461 174 23 1 28 483 1665 1234 24 1 36 819 4725 6124 25 1 36 1266 11193 23259 26 1 45 1878 23646 73204 . T(20,3) = 6 because the number of equivalence classes of ways of placing 3 10 X 10 square tiles in a 20 X 20 square under all symmetry operations of the square is 6.
Links
- Christopher Hunt Gribble, C++ program
- Christopher Hunt Gribble, Example graphics
Formula
It appears that:
T(n,0) = 1, n>= 10
T(n,1) = (floor((n-10)/2)+1)*(floor((n-10)/2+2))/2, n >= 10
T(c+2*10,2) = A131474(c+1)*(10-1) + A000217(c+1)*floor((10-1)(10-3)/4) + A014409(c+2), 0 <= c < 10, c odd
T(c+2*10,3) = (c+1)(c+2)/2(2*A002623(c-1)*floor((10-c-1)/2) + A131941(c+1)*floor((10-c)/2)) + S(c+1,3c+2,3), 0 <= c < 10 where
S(c+1,3c+2,3) =
A054252(2,3), c = 0
A236679(5,3), c = 1
A236560(8,3), c = 2
A236757(11,3), c = 3
A236800(14,3), c = 4
A236829(17,3), c = 5
A236865(20,3), c = 6
A236915(23,3), c = 7
A236936(26,3), c = 8
A236939(29,3), c = 9