cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A237018 Number A(n,k) of partitions of the k-dimensional hypercube resulting from a sequence of n bisections, each of which splits any part perpendicular to any of the axes; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 2, 0, 1, 3, 8, 5, 0, 1, 4, 18, 39, 14, 0, 1, 5, 32, 132, 212, 42, 0, 1, 6, 50, 314, 1080, 1232, 132, 0, 1, 7, 72, 615, 3440, 9450, 7492, 429, 0, 1, 8, 98, 1065, 8450, 40320, 86544, 47082, 1430, 0, 1, 9, 128, 1694, 17604, 124250, 494736, 819154, 303336, 4862, 0
Offset: 0

Views

Author

Alois P. Heinz, Feb 02 2014

Keywords

Comments

The g.f. given below is a generalization of formulas given by Murray R. Bremner and Sara Madariaga in A236339 and A236342. According to them A(n,k) also gives the number of distinct monomials of degree n+1 in the universal algebra with k nonassociative binary products {*1,...,*k} related only by the interchange laws from k-category theory: (a *i b) *j (c *i d) = (a *j c) *i (b *j d) for i,j in {1,...,k} and i
These numbers can be regarded as (one of many possible definitions of) higher-dimensional Catalan numbers. - N. J. A. Sloane, Feb 12 2014

Examples

			A(3,1) = 5:
  [||-|---], [-|||---], [-|-|-|-], [---|||-], [---|-||].
  .
A(2,2) = 8:
  ._______.  ._______.  ._______.  ._______.
  | | |   |  |   | | |  |_______|  |       |
  | | |   |  |   | | |  |_______|  |_______|
  | | |   |  |   | | |  |       |  |_______|
  |_|_|___|  |___|_|_|  |_______|  |_______|
  ._______.  ._______.  ._______.  ._______.
  |   |   |  |   |   |  |   |   |  |       |
  |___|   |  |   |___|  |___|___|  |_______|
  |   |   |  |   |   |  |       |  |   |   |
  |___|___|  |___|___|  |_______|  |___|___|.
  .
Square array A(n,k) begins:
  1,   1,    1,     1,      1,       1,       1, ...
  0,   1,    2,     3,      4,       5,       6, ...
  0,   2,    8,    18,     32,      50,      72, ...
  0,   5,   39,   132,    314,     615,    1065, ...
  0,  14,  212,  1080,   3440,    8450,   17604, ...
  0,  42, 1232,  9450,  40320,  124250,  311472, ...
  0, 132, 7492, 86544, 494736, 1912900, 5770692, ...
		

Crossrefs

Columns k=0-10 give: A000007, A000108, A236339(n+1), A236342(n+1), A237019, A237020, A237021, A237022, A237023, A237024, A237025.
Rows n=0-2 give: A000012, A001477, A001105.
Main diagonal gives A237026.
Cf. A255982.

Programs

  • Maple
    A:= (n, k)-> coeff(series(RootOf(x*(-1)^k=add((-1)^i*
        binomial(k, i)*(G*x)^(2^(k-i)), i=0..k), G), x, n+1), x, n):
    seq(seq(A(n, d-n), n=0..d), d=0..10);
    # second Maple program:
    b:= proc(n, k, t) option remember; `if`(t=0, 1, `if`(t=1,
           A(n-1, k), add(A(j, k)*b(n-j-1, k, t-1), j=0..n-2)))
        end:
    A:= proc(n, k) option remember; `if`(n=0, 1,
          -add(binomial(k, j)*(-1)^j*b(n+1, k, 2^j), j=1..k))
        end:
    seq(seq(A(n, d-n), n=0..d), d=0..10);
  • Mathematica
    b[n_, k_, t_] := b[n, k, t] = If[t == 0, 1, If[t == 1, A[n-1, k], Sum[A[j, k]*b[n-j-1, k, t-1], {j, 0, n-2}]]]; A[n_, k_] := A[n, k] = If[n == 0, 1, -Sum[ Binomial[k, j]*(-1)^j*b[n+1, k, 2^j], {j, 1, k}]]; Table[Table[A[n, d-n], {n, 0, d}], {d, 0, 10}] // Flatten (* Jean-François Alcover, Jan 19 2015, after Alois P. Heinz *)

Formula

G.f. G_k of column k satisfies: (-1)^k*x = Sum_{i=0..k} (-1)^i*C(k,i)*(G_k*x)^(2^(k-i)).
A(n,k) = Sum_{i=0..k} C(k,i) * A255982(n,i). - Alois P. Heinz, Mar 13 2015