A237053 Smallest number k such that some subset of n+1..n+k can be summed and added to n to produce a prime.
2, 1, 0, 0, 3, 0, 1, 0, 1, 1, 3, 0, 3, 0, 1, 1, 3, 0, 1, 0, 1, 1, 3, 0, 4, 3, 1, 5, 3, 0, 1, 0, 3, 1, 3, 1, 1, 0, 3, 1, 3, 0, 3, 0, 1, 3, 4, 0, 1, 3, 1, 1, 3, 0, 1, 3, 1, 5, 3, 0, 5, 0, 3, 1, 3, 1, 4, 0, 1, 1, 6, 0, 4, 0, 1, 1, 3, 3, 1, 0, 3, 1, 3, 0, 3, 3, 1, 5, 3, 0, 1, 3, 3, 3, 3, 1, 1
Offset: 0
Examples
If n is prime, sum({n}) is prime, so we can take k = 0, whence n+1..n+0 is empty, so a(n) = 0. 6 is not prime, but 6+7 = 13 is prime, so a(6) = 1. 4 is not prime, and 4+5 is not prime, but 4+7 = 11 and 4+6+7 = 17 are prime; either of these suffices to make a(4) = 3.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..100000
Programs
-
Maple
b:= (n, i, t)-> isprime(n) or t>0 and (b(n, i+1, t-1) or b(n+i, i+1, t-1)): a:= proc(n) local k; for k from 0 while not b(n, n+1, k) do od; k end: seq(a(n), n=0..100); # Alois P. Heinz, Feb 07 2014
-
Mathematica
b[n_, i_, t_] := PrimeQ[n] || t > 0 && (b[n, i+1, t-1] || b[n+i, i+1, t-1]); a[n_] := Module[{k}, For[k = 0, !b[n, n+1, k], k++]; k]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Sep 04 2025, after Alois P. Heinz *)
Comments