A237121 Number of primes p < prime(n)/2 such that P(p) is a primitive root modulo prime(n), where P(.) is the partition function given by A000041.
0, 0, 1, 1, 2, 2, 2, 3, 3, 5, 1, 3, 4, 1, 4, 5, 5, 5, 3, 4, 6, 6, 5, 7, 6, 8, 5, 8, 5, 8, 10, 9, 9, 9, 11, 7, 6, 9, 11, 9, 14, 5, 6, 4, 10, 4, 6, 7, 12, 9, 14, 9, 8, 11, 11, 17, 23, 11, 15, 6, 13, 22, 14, 14, 11, 19, 11, 7, 22, 13
Offset: 1
Keywords
Examples
a(14) = 1 since 3 is a prime smaller than prime(14)/2 = 43/2 and P(3) = 3 is a primitive root modulo prime(14) = 43.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
f[k_]:=PartitionsP[Prime[k]] dv[n_]:=Divisors[n] Do[m=0;Do[If[Mod[f[k],Prime[n]]==0,Goto[aa],Do[If[Mod[f[k]^(Part[dv[Prime[n]-1],i]),Prime[n]]==1,Goto[aa]],{i,1,Length[dv[Prime[n]-1]]-1}]];m=m+1;Label[aa];Continue,{k,1,PrimePi[(Prime[n]-1)/2]}];Print[n," ",m];Continue,{n,1,70}]
Comments