A237183 Primes p with phi(p+1) - 1 and phi(p+1) + 1 both prime, where phi(.) is Euler's totient function.
7, 11, 13, 17, 37, 41, 53, 61, 97, 151, 181, 197, 227, 233, 251, 269, 277, 397, 433, 457, 487, 541, 557, 571, 593, 619, 631, 719, 743, 769, 839, 857, 929, 941, 947, 953, 1013, 1021, 1049, 1061, 1063, 1201, 1237, 1277, 1307, 1321, 1367, 1481, 1511, 1549
Offset: 1
Keywords
Examples
a(1) = 7 since 7, phi(7+1) - 1 = 3 and phi(7+1) + 1 = 5 are all prime, but phi(2+1) - 1 = phi(3+1) - 1 = phi(5+1) - 1 = 1 is not prime.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
PQ[n_]:=PrimeQ[EulerPhi[n]-1]&&PrimeQ[EulerPhi[n]+1] n=0;Do[If[PQ[Prime[k]+1],n=n+1;Print[n," ",Prime[k]]],{k,1,10000}] Select[Prime[Range[300]],And@@PrimeQ[EulerPhi[#+1]+{1,-1}]&] (* Harvey P. Dale, Mar 06 2014 *)
-
PARI
s=[]; forprime(p=2, 2000, if(isprime(eulerphi(p+1)-1) && isprime(eulerphi(p+1)+1), s=concat(s, p))); s \\ Colin Barker, Feb 04 2014
Comments