A237275 Smallest k divisible by the n-th power of its last decimal digit > 1.
2, 2, 12, 32, 32, 32, 192, 512, 512, 512, 3072, 8192, 8192, 8192, 49152, 131072, 131072, 131072, 786432, 2097152, 2097152, 2097152, 12582912, 33554432, 33554432, 33554432
Offset: 0
Examples
a(0) = 2 because 2 is divisible by 2^0 = 1. a(1) = 2 because 2 is divisible by 2^1 = 2. a(2) = 12 because 12 is divisible by 2^2 = 4.
Crossrefs
Cf. A132359.
Programs
-
Mathematica
Do[k=1;While[!Total[Transpose[IntegerDigits[k][[-1]]>0&&Mod[k,IntegerDigits[k][[-1]]^n]==0&&!Mod[k,10]==1],k++]];Print[n," ",k-1],{n,0,25}]
Formula
a(n) = 3*2^n if n mod 4 = 2; 2^(n+2-((n+1) mod 4)) otherwise. - Jon E. Schoenfield, Sep 12 2017
Comments