A237288 Lexicographically earliest sequence of noncomposite numbers such that a(n)*n / sum(i=1..n, a(n) ) is strictly increasing.
1, 2, 3, 5, 7, 11, 17, 23, 31, 41, 53, 67, 83, 101, 127, 151, 179, 211, 251, 293, 337, 389, 443, 503, 569, 641, 719, 809, 907, 1009, 1117, 1229, 1361, 1493, 1637, 1787, 1949, 2129, 2309, 2503, 2707, 2917, 3137, 3371, 3613, 3877, 4153, 4441, 4751, 5059, 5381
Offset: 1
Keywords
Examples
For n=8: noncomposite number a(8) = 23 > a(7) = 17 is the smallest noncomposite number such that (8*23 / 69) > (7*17 / 46), a(8) is not 19 because (8*19 / (69-4)) < (7*17 / 46).
Crossrefs
Cf. A008578 (noncomposite numbers).
Comments