A237289 Sum of positive numbers k <= sigma(n) that are not a sum of any subset of distinct divisors of n.
0, 0, 2, 0, 9, 0, 20, 0, 39, 27, 54, 0, 77, 108, 108, 0, 135, 0, 170, 0, 272, 378, 252, 0, 372, 567, 500, 0, 405, 0, 464, 0, 792, 1053, 792, 0, 665, 1350, 1148, 0, 819, 0, 902, 882, 897, 2052, 1080, 0, 1425, 1395, 2052, 1715, 1377, 0, 2052, 0, 2600, 3375, 1710
Offset: 1
Keywords
Examples
For n = 5, a(5) = 2 + 3 + 4 = 9 (numbers 2, 3 and 4 are not a sum of any subset of distinct divisors of 5). Numbers n = 14 and 15 are an interesting pair of consecutive numbers with identical value of sigma(n) such that simultaneously a(14) = a(15) and A237290(14) = A237290(15). a(14) = 4+5+6+11+12+13+18+19+20 = a(15) = 2+7+10+11+12+13+14+17+22 = 108. a(6) = 0 as 6 is practical; the sums into distinct divisors from 1 through 12 are 1 = 1, 2 = 2, 3 = 3, 4 = 1 + 3, 5 = 2 + 3, 6 = 1 + 2 + 3, 7 through 12 are (1 through 6) + 6. So none are not a sum distinct divisors of 6. - _David A. Corneth_, Jul 22 2025
Links
- David A. Corneth, Table of n, a(n) for n = 1..10000
Programs
-
Maple
isSumDist := proc(n,k) local dvs ; dvs := numtheory[divisors](n) ; for s in combinat[powerset](dvs) do add(m,m=op(s)) ; if % = k then return true; end if; end do: false ; end proc: A237289 := proc(n) local a; a := 0 ; for k from 1 to numtheory[sigma](n) do if not isSumDist(n,k) then a := a+k; end if; end do: a ; end proc: seq(A237289(n),n=1..20) ; # R. J. Mathar, Mar 13 2014
-
Mathematica
a[n_] := Block[{d = Divisors@n, s}, s = Plus @@ d; s*(s + 1)/2 - Plus @@ Union[Plus @@@ Subsets@d]]; m = Array[a, 59] (* Giovanni Resta, Mar 13 2014 *)
-
Python
from sympy import divisors def A237289(n): ds = divisors(n) c, s = {0}, sum(ds) for d in ds: c |= {a+d for a in c} return (s*(s+1)>>1)-sum(a for a in c if 1<=a<=s) # Chai Wah Wu, Jul 05 2023
Formula
Extensions
a(55) and a(57)-a(59) corrected by Giovanni Resta, Mar 13 2014