A237291 Number of ways to write 2*n - 1 = p + q + r (p <= q <= r) with p, q, r, pi(p), pi(q), pi(r) all prime, where pi(x) denotes the number of primes not exceeding x (A000720).
0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 0, 1, 2, 0, 2, 3, 1, 0, 2, 2, 1, 3, 2, 1, 1, 1, 1, 2, 3, 2, 2, 0, 3, 4, 2, 2, 3, 2, 1, 3, 4, 1, 5, 2, 1, 2, 3, 4, 3, 1, 1, 3, 2, 2, 4, 3, 2, 3, 3, 1, 5, 5, 1, 3, 4, 2, 3, 4, 4, 2, 4, 2, 3, 4, 2, 2
Offset: 1
Keywords
Examples
a(16) = 1 since 2*16 - 1 = 3 + 11 + 17 with 3, 11, 17, pi(3) = 2, pi(11) = 5 and pi(17) = 7 all prime. a(179) = 1 since 2*179 - 1 = 83 + 83 + 191 with 83, 191, pi(83) = 23 and pi(191) = 43 all prime.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..5000
- H. A. Helfgott, Minor arcs for Goldbach's problem, arXiv:1205.5252, 2012.
- H. A. Helfgott, Major arcs for Goldbach's theorem, arXiv:1305.2897, 2013.
- Z.-W. Sun, Problems on combinatorial properties of primes, arXiv:1402.6641, 2014
Programs
-
Mathematica
p[n_]:=PrimeQ[n]&&PrimeQ[PrimePi[n]] a[n_]:=Sum[If[p[2n-1-Prime[Prime[i]]-Prime[Prime[j]]],1,0],{i,1,PrimePi[PrimePi[(2n-1)/3]]},{j,i,PrimePi[PrimePi[(2n-1-Prime[Prime[i]])/2]]}] Table[a[n],{n,1,80}]
Comments