A237356 The number of tilings of the 3 X 4 X (2n) room with 1 X 2 X 2 boxes.
1, 29, 1065, 41097, 1602289, 62603505, 2447085377, 95662064129, 3739717169185, 146197357313057, 5715321341103969, 223430193355808865, 8734601289109031137, 341463519887132765409, 13348901883923975256545, 521851299448684501083617, 20400837546324144424724449, 797534035150318477886048225, 31178158042817899845549718497
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- R. J. Mathar, Tilings of rectangular regions by rectangular tiles: counts derived from transfer matrices, arXiv:1406.7788 [math.CO], eq. (44).
- Index entries for linear recurrences with constant coefficients, signature (55,-700,3186,-5180,2640).
Programs
-
Maple
A237356 := proc(n) (1-2*x)*(-120*x^3+122*x^2-24*x+1) / ( (1-x) *(2640*x^4-2540*x^3+646*x^2-54*x+1) ) ; coeftayl(%,x=0,n) ; end proc: seq(A237356(n),n=0..20) ;
-
Mathematica
CoefficientList[Series[(1 - 2 x) (-120 x^3 + 122 x^2 - 24 x + 1)/((1 - x) (2640 x^4 - 2540 x^3 + 646 x^2 - 54 x + 1)), {x, 0, 30}], x] (* Vincenzo Librandi, Feb 08 2014 *)
Formula
G.f.: (1-2*x)*(-120*x^3+122*x^2-24*x+1) / ( (1-x) *(2640*x^4-2540*x^3+646*x^2-54*x+1) ) .
Comments