A237358 The number of tilings of the 3 X 4 X n room with 1 X 2 X 3 boxes.
1, 1, 11, 64, 296, 1716, 9123, 48761, 264457, 1420548, 7652666, 41237256, 222050029, 1196138637, 6442843111, 34702528552, 186921714672, 1006820870616, 5423072856651, 29210535955209, 157337764568209, 847474515870020, 4564784961695166, 24587476389796440
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- R. J. Mathar, Tilings of rectangular regions by rectangular tiles: counts derived from transfer matrices, arXiv:1406.7788 [math.CO], eq. (58).
- Index entries for linear recurrences with constant coefficients, signature (2, 14, 42, -42, -237, -504, -103, 487, 1012, 448, -306, -74, -915, 450, -873, -54, 162).
Programs
-
Maple
A237358 := proc(n) (1-x)*(1+x)*(1-3*x)*(3*x^2+2*x+1)*(1-x^2-7*x^3+9*x^6)/ (504*x^6 +306*x^11 +1 -1012*x^9 +103*x^7 -2*x +54*x^16 -162*x^17 -450*x^14 +74*x^12 -14*x^2 -487*x^8 -42*x^3 -448*x^10 +915*x^13 +237*x^5 +873*x^15 +42*x^4) ; coeftayl(%,x=0,n) ; end proc: seq(A237358(n),n=0..20) ;
-
Mathematica
CoefficientList[Series[(1 - x) (1 + x) (1 - 3 x) (3 x^2 + 2 x + 1) (1 - x^2 - 7 x^3 + 9 x^6)/(504 x^6 + 306 x^11 + 1 - 1012 x^9 + 103 x^7 - 2 x + 54 x^16 - 162 x^17 - 450 x^14 + 74 x^12 - 14 x^2 - 487 x^8 - 42 x^3 - 448 x^10 + 915 x^13 + 237 x^5 + 873 x^15 + 42 x^4), {x, 0, 30}], x] (* Vincenzo Librandi, Feb 08 2014 *)
Comments