A237363 Number of partitions of n for which 2*(number of distinct parts) <= (number of parts).
1, 0, 1, 1, 2, 2, 6, 6, 10, 13, 20, 26, 39, 50, 71, 87, 121, 156, 208, 265, 348, 440, 566, 712, 906, 1131, 1424, 1766, 2224, 2738, 3390, 4168, 5130, 6266, 7664, 9312, 11332, 13723, 16603, 20004, 24112, 28942, 34708, 41522, 49612, 59031, 70308, 83479, 98992
Offset: 0
Keywords
Examples
Among the 22 partitions of 8, these qualify: [5,1,1,1], [4,4], [4,1,1,1,1], [3,3,1,1], [3,1,1,1,1,1], [2,2,2,2], [2,2,2,1,1], [2,2,1,1,1,1], [2,1,1,1,1,1,1], [1,1,1,1,1,1,1,1], and the remaining 12 do not, so that a(8) = 10.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..800
Crossrefs
Programs
-
Mathematica
z = 50; t = Map[Length[Select[IntegerPartitions[#], 2*Length[DeleteDuplicates[#]] <= Length[#] &]] &, Range[z]] (*A237363*) Table[PartitionsP[n] - t[[n]], {n, 1, z}] (*A237365*) (* Peter J. C. Moses, Feb 06 2014 *) Table[Length[Select[IntegerPartitions[n],Median[Differences[#]]==0&]],{n,0,30}] (* Gus Wiseman, Mar 18 2023 *)
Comments