A237414 Primes p with p^2 - 2 and prime(p)^2 - 2 both prime.
2, 3, 43, 47, 107, 139, 191, 211, 223, 239, 293, 313, 337, 541, 743, 757, 863, 1013, 1153, 1231, 1619, 2113, 2137, 2287, 2297, 2423, 2543, 2729, 2749, 2897, 3079, 3089, 3313, 3863, 3947, 4241, 4271, 4583, 4649, 4993, 5581, 6571, 6637, 6911, 7547, 8629, 8849, 8867, 9049, 9661
Offset: 1
Keywords
Examples
a(1) = 2 since 2^2 - 2 = 2 and prime(2)^2 - 2 = 3^2 - 2 = 7 are both prime.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
- Z.-W. Sun, Problems on combinatorial properties of primes, arXiv:1402.6641, 2014
Programs
-
Mathematica
p[n_]:=PrimeQ[n^2-2] n=0;Do[If[p[Prime[k]]&&p[Prime[Prime[k]]],n=n+1;Print[n," ",Prime[k]]],{k,1,1000}] Select[Prime[Range[1200]],AllTrue[{#^2-2,Prime[#]^2-2},PrimeQ]&] (* Harvey P. Dale, Apr 06 2022 *)
Comments