cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A237425 Denominators of A164555(n)/A027642(n) + A198631(n)/A006519(n+1).

Original entry on oeis.org

1, 1, 6, 4, 30, 2, 42, 8, 30, 2, 66, 4, 2730, 2, 6, 16, 510, 2, 798, 4, 330, 2, 138, 8, 2730, 2, 6, 4, 870, 2, 14322, 32, 510, 2, 6, 4, 1919190, 2, 6, 8, 13530, 2, 1806, 4, 690, 2, 282, 16, 46410, 2, 66, 4, 1590, 2, 798, 8
Offset: 0

Views

Author

Paul Curtz, Feb 07 2014

Keywords

Comments

An autosequence is a sequence which has its inverse binomial transform equal to the signed sequence. There are two possibilities. For the first kind, the main diagonal is 0's=A000004, the first two following diagonals being the same (generally not A000004). Integers example: A000045(n).
For the second kind, the main diagonal is the double of the following diagonal. Example: the companion to A000045(n) is A000032(n)=2, 1, 3, ... .
A000032(n)/2 is also a possibility. Here a(n) is the denominator of the sum of two autosequences of second kind involving (fractional) Euler and Bernoulli numbers. The corresponding fractional sequence is also an autosequence of the second kind: 2, 1, 1/6, -1/4, -1/30, 1/2, 1/42, -17/8, -1/30, 31/2, 5/66, -691/4, -691/2730,... . It could be divided by 2.

Crossrefs

Programs

  • Mathematica
    a[n_] := BernoulliB[n] + EulerE[n, 1]/2^IntegerExponent[n, 2]; a[0] = 2; a[1] = 1; Table[a[n] // Denominator, {n, 0, 55}] (* Jean-François Alcover, Feb 11 2014 *)

Formula

a(2n) = A002445(n). a(2n+2) = A171977(n+2).