A237447 Infinite square array: row 1 is the positive integers 1, 2, 3, ..., and on any subsequent row n, n is moved to the front: n, 1, ..., n-1, n+1, n+2, ...
1, 2, 2, 3, 1, 3, 4, 3, 1, 4, 5, 4, 2, 1, 5, 6, 5, 4, 2, 1, 6, 7, 6, 5, 3, 2, 1, 7, 8, 7, 6, 5, 3, 2, 1, 8, 9, 8, 7, 6, 4, 3, 2, 1, 9, 10, 9, 8, 7, 6, 4, 3, 2, 1, 10, 11, 10, 9, 8, 7, 5, 4, 3, 2, 1, 11, 12, 11, 10, 9, 8, 7, 5, 4, 3, 2, 1, 12, 13, 12, 11, 10, 9, 8, 6, 5, 4, 3, 2, 1, 13, 14, 13, 12, 11, 10, 9, 8, 6, 5, 4, 3, 2, 1, 14, 15, 14, 13, 12, 11, 10, 9, 7, 6, 5, 4, 3, 2, 1, 15
Offset: 1
Examples
The top left 9 X 9 corner of this infinite square array: 1 2 3 4 5 6 7 8 9 2 1 3 4 5 6 7 8 9 3 1 2 4 5 6 7 8 9 4 1 2 3 5 6 7 8 9 5 1 2 3 4 6 7 8 9 6 1 2 3 4 5 7 8 9 7 1 2 3 4 5 6 8 9 8 1 2 3 4 5 6 7 9 9 1 2 3 4 5 6 7 8 Note how this is also the 9th finite subsquare of the sequence A237265, which can be picked from its terms A237265(205) .. A237265(285), where 205 = 1+A000330(9-1), the starting offset for that 9th subsquare in A237265.
References
- Joseph J. Rotman, An Introduction to the Theory of Groups, 4th ed., Springer-Verlag, New York, 1995. First chapter, pp. 1-19 [For a general introduction], and from chapter 2, problem 2.9, p. 24.
Links
Crossrefs
Programs
-
Maple
T:= proc(r,c) if c > r then c elif c=1 then r else c-1 fi end proc: seq(seq(T(r,n-r),r=1..n-1),n=1..20); # Robert Israel, May 09 2017
-
Mathematica
Table[Function[n, If[k == 1, n, k - Boole[k <= n]]][m - k + 1], {m, 15}, {k, m, 1, -1}] // Flatten (* Michael De Vlieger, May 09 2017 *)
-
PARI
A237447(n,k=0)=if(k, if(k>1, k-(k<=n), n), A237447(A002260(n), A004736(n))) \\ Yields the element [n,k] of the matrix, or the n-th term of the "linearized" sequence if no k is given. - M. F. Hasler, Mar 09 2014
-
Scheme
(define (A237447 n) (+ (* (A010054 n) (A002024 n)) (* (- 1 (A010054 n)) (- (A004736 n) (if (>= (A002260 n) (A004736 n)) 1 0))))) ;; Another variant based on Cano's A237265. (define (A237447 n) (let* ((row (A002260 n)) (col (A004736 n)) (sss (max row col)) (sof (+ 1 (A000330 (- sss 1))))) (A237265 (+ sof (* sss (- row 1)) (- col 1)))))
Formula
When col > row, T(row,col) = col, when 1 < col <= row, T(row,col) = col-1, and when col=1, T(row,1) = row.
a(n) = A010054(n) * A002024(n) + (1-A010054(n)) * (A004736(n) - [A002260(n) >= A004736(n)]). [This gives the formula for this entry represented as a one-dimensional sequence. Here the expression inside Iverson brackets results 1 only when the row index (A002260) is greater than or equal to the column index (A004736), otherwise zero. A010054 is the characteristic function for the triangular numbers, A000217.]
T(row,col) = A237265((A000330(max(row,col)-1)+1) + (max(row,col)*(row-1)) + (col-1)). [Takes the infinite limit of n X n matrices of A237265.]
G.f. as array: g(x,y) = (1 - 4*x*y + 3*x*y^2 + x^2*y - x*y^3)*x*y/((1-x*y)*(1-x)^2*(1-y)^2). - Robert Israel, May 09 2017
Comments