cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A237451 Zero-based column index to irregular tables organized as successively larger square matrices.

Original entry on oeis.org

0, 0, 1, 0, 1, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 4, 0, 1, 2, 3, 4, 0, 1, 2, 3, 4, 0, 1, 2, 3, 4, 0, 1, 2, 3, 4, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5
Offset: 1

Views

Author

Antti Karttunen, Feb 08 2014

Keywords

Comments

With sequences constructed of successively larger square matrices (cf. A074279), a(n) will return the distance of n from the left edge of the matrix that n is located in, with 0 standing for the leftmost column (please see the Example section).
A237452 gives the corresponding row index.
A238013 and A121997 give these same row and column indices, starting the numbering with index 1. - M. F. Hasler, Feb 17 2014

Examples

			This irregular table begins as:
0;
0,1;
0,1;
0,1,2;
0,1,2;
0,1,2;
0,1,2,3;
0,1,2,3;
0,1,2,3;
0,1,2,3;
0,1,2,3,4;
0,1,2,3,4;
0,1,2,3,4;
0,1,2,3,4;
0,1,2,3,4;...
		

Crossrefs

Programs

  • Python
    from sympy import integer_nthroot
    def A237451(n): return (n-(k:=(m:=integer_nthroot(3*n,3)[0])+(6*n>m*(m+1)*((m<<1)+1)))*(k-1)*((k<<1)-1)//6-1)%k # Chai Wah Wu, Nov 04 2024
  • Scheme
    (define (A237451 n) (modulo (-1+ (A064866 n)) (A074279 n)))
    

Formula

a(n) = (A064866(n)-1) modulo A074279(n).
a(n) = A121997(n)-1. - M. F. Hasler, Feb 16 2014