A237512 Number of solutions to Sum_{k=1..n} k*c(k) = n! , c(k) > 0.
0, 1, 0, 1, 47, 55496, 2080571733, 4441900888487987, 849835826032526606030103, 20540228659655619974131131927286681, 82853643094578125257400348993596774353069331199, 70898139566455107685443806945119782661588205935442233026505921
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..31
- A. V. Sills and D. Zeilberger, Formulae for the number of partitions of n into at most m parts (using the quasi-polynomial ansatz) (arXiv:1108.4391 [math.CO])
- StackExchange, Combinations sum_{k=1..m} k*n_k = m!, Jan 29 2014
Crossrefs
Cf. A236810.
Programs
-
Mathematica
Table[Coefficient[Series[Product[x^k/(1-x^k),{k,n}],{x,0,n!}],x^(n!) ] ,{n,7}]
Formula
a(n) = [x^(n!)] Product_{k=1..n} x^k/(1-x^k).
a(n) = [x^(n!-n*(n+1)/2)] Product_{k=1..n} 1/(1-x^k). - Alois P. Heinz, Feb 08 2014
a(n) ~ n * (n!)^(n-3) ~ n^(n^2-5*n/2-1/2) * (2*Pi)^((n-3)/2) / exp(n*(n-3)-1/12). - Vaclav Kotesovec, Jun 05 2015
Extensions
a(8)-a(11) from Alois P. Heinz, Feb 08 2014
Comments