cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A237529 Number of ways to choose 4 points in an n X n X n triangular grid so that no 3 of them form a 2 X 2 X 2 subtriangle.

Original entry on oeis.org

6, 156, 1191, 5565, 19620, 57351, 146391, 336951, 714555, 1417515, 2660196, 4763226, 8191911, 13604220, 21909810, 34341666, 52542036, 78664446, 115493685, 166585755, 236429886, 330634821, 456141681, 621465825, 836970225, 1115172981, 1471091706, 1922627616
Offset: 3

Views

Author

Heinrich Ludwig, Feb 09 2014

Keywords

Comments

All elements of the sequence are multiples of 3.

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{9,-36,84,-126,126,-84,36,-9,1},{6,156,1191,5565,19620,57351,146391,336951,714555},40] (* Harvey P. Dale, Sep 29 2019 *)
  • PARI
    Vec(-3*x^3*(2*x^6-11*x^5+21*x^4-14*x^3+x^2+34*x+2)/(x-1)^9 + O(x^100)) \\ Colin Barker, Feb 09 2014

Formula

a(n) = (n-1)*(n-2)*(n^6 + 7*n^5 + 13*n^4 - 7*n^3 - 230*n^2 - 408*n + 1152)/384.
G.f.: -3*x^3*(2*x^6 - 11*x^5 + 21*x^4 - 14*x^3 + x^2 + 34*x + 2) / (x-1)^9. - Colin Barker, Feb 09 2014