A237600 Right-truncatable primes in base 16.
2, 3, 5, 7, 11, 13, 37, 41, 43, 47, 53, 59, 61, 83, 89, 113, 127, 179, 181, 191, 211, 223, 593, 599, 601, 607, 659, 661, 691, 701, 757, 761, 853, 857, 859, 863, 947, 953, 977, 983, 991, 1427, 1429, 1433, 1439, 1811, 1823, 2039, 2879, 2897, 2903, 2909, 3061
Offset: 1
Examples
a(414) = 16778492037124607, in hexadecimal notation 3B9BF319BD51FF, belongs to a(n) because each of its hexadecimal prefixes (including itself) is a prime. Being the largest of such numbers, it is also a member of A023107.
Links
- Stanislav Sykora, Table of n, a(n) for n = 1..414
- Stanislav Sykora, PARI/GP scripts for genetic threads
Programs
-
Mathematica
Select[Range@ 3600, AllTrue[Most[DeleteDuplicates@ FixedPointList[f, #]], PrimeQ] &] (* Michael De Vlieger, Mar 07 2015, Version 10 *)
-
PARI
GT_Trunc1(nmax,prop,b=10) = { \\ See the link for details my (n=0,v=vector(nmax),g=1,lgs=1,lge,an,c); for (k=1,b-1,if (prop(k),v[n++]=k)); lge=n; c=lge-lgs+1; while (c, g++;for (k=lgs,lge,for (m=0,b-1, an=b*v[k]+m; if (prop(an), v[n++]=an;if (n>=nmax,return (v))););); lgs=lge+1; lge=n; c=lge-lgs+1;); if (n, return (v[1..n])); print("No solution");} v = GT_Trunc1(1000000,isprime,16)
-
PARI
isok(n)={ while(n, if(!isprime(n),return(0));n\=16); 1} \\ Joerg Arndt, Mar 07 2015
-
PARI
my(A=primes([0,15]),i=1); until(#AA237600=A \\ M. F. Hasler, Nov 07 2018
-
Python
from gmpy2 import is_prime A237600_list = [] for n in range(1,10**9): if is_prime(n): s = format(n,'x') for i in range(1,len(s)): if not is_prime(int(s[:-i],16)): break else: A237600_list.append(n) # Chai Wah Wu, Apr 16 2015
-
Python
from sympy import primerange p = lambda x: list(primerange(x,x+16)); A237600 = p(0); i=0 while i
A237600): A237600+=p(A237600[i]*16); i+=1 # M. F. Hasler, Mar 11 2020
Comments